Ro-torsional energy correlation in the case of HSOH: between the high barrier and free-internal-rotor limits

(AIST^a, UNB^b) Koichi M T Yamada^a and Stephen C. Ross^b

ABSTRACT: To obtain a conceptual explanation of the peculiar variation of the torsional tunneling splitting with rotational quantum number, *K*, observed in HSOH, we have determined the energy correlation diagram between two limiting cases. These are the free-rotor (zero-barrier) limit and the high-barrier limit. To do this we used the reduced-dimension Generalized Semi-Rigid Bender (GSRB) approach. In this context we also present the symmetries and appropriate quantum numbers for the states in the two limiting cases.

Introduction

The ro-torsional spectra of HSOH exhibit exotic behavior due to strong coupling of torsion and rotation. The observed torsional tunneling splitting changes its magnitude cyclically with the rotational quantum number, *K*, with a period depending on the ratio of the end moieties. In our previous paper [1] we reported that in the low-J region (J<10) the observed spectra can be reproduced by a reduced-dimension model based on the GSRB approach. We also compared our results with those obtained by other approaches: an algebraic model [2], based on the high-barrier matrix formalism [3], and a full-dimensional TROVE model [4]. Here we present a conceptual explanation of this cyclic variation of the torsional splitting for HSOH. We do this by inspecting the energy-level correlation between states at the free-rotor (zero-barrier) limit and at the more physical high-barrier limit [5]. In this context we also present the symmetries and appropriate quantum numbers for the states in these two limits.

Limiting cases: high-barrier limit and zero-barrier limit

At the high-barrier limit, the torsional energy levels of HSOH resemble those of a harmonic oscillator but with each level doubled by the tunneling effect. The ro-torsional quantum states of HSOH in the ground vibrational state can be represented by the product of a torsional wavefunction and a Wang-type rotational wavefunction, $|v_t^{\pm}\rangle|J,K\rangle_{\gamma}$. v_t =0 for the ground state and the components of the tunneling doublet are distinguished by symmetry \pm (+ for symmetric and – for anti-symmetric with respect to the symmetry operation E^*). The Wang basis is expressed for K>0 as $|J,K\rangle_{\gamma} = (|J,K\rangle + (-1)^{\gamma}|J,-K\rangle)\sqrt{2}$, which is of *e/f*-symmetry for $K+\gamma$ =even/odd, respectively.

At the zero-barrier limit, ro-torsional energy term values are given in the reduced-dimension model (torsion and rotation) as, approximately,

$$E(N_{\rm OH}, N_{\rm SH}; J, K) = A_{\rm OH} N_{\rm OH}^2 + A_{\rm SH} N_{\rm SH}^2 + B[J(J+1)-K^2].$$
(1)

Here A_{OH} and A_{SH} are the rotational constants around the axis of internal rotation of OH and SH moiety, respectively, and *B* is the rotational constant in the diatomic molecule approximation. N_{OH} and N_{SH} are the quantum numbers representing the rotation of the OH and SH moieties around the internal rotation axis: $N_{OH} = |n_{OH}|$, $N_{SH} = |n_{SH}|$, and $K = |k| = |n_{OH} + n_{SH}|$. The corresponding eigenfunction is given as,

 $|n_{OH}, n_{SH}; J, k > = N | n_{OH}, n_{SH}; k > S_{J,k}(\theta, \phi) = N' \exp[in_{OH}\chi_{OH}] \exp[in_{SH}\chi_{SH}] S_{J,k}(\theta, \phi),$ (2) where the angle variables χ_{OH} and χ_{SH} are as shown in Fig. 1 and N and N' are normalization factors. The torsion-*z*-rotation part of the wavefunction $|n_{OH}, n_{SH}; k >$ is symmetrized by taking the Wang-type linear combinations, $|N_{OH}, N_{SH}; K >_{\Gamma} = (|N_{OH}, N_{SH}; K > +(-1)^{\Gamma} | -N_{OH}, -N_{SH}; -K >)/\sqrt{2}$, which are of *e/f*-symmetry for $K+\Gamma$ =even/odd, respectively.

Correlation Diagram

The qualitative energy-level-correlation diagram can be readily obtained by connecting levels of the same *K* and same symmetry between these two limits, step-by-step from the lowest energy level. We obtained a more quantitative correlation by calculating the ro-torsional energies using the GSRB Hamiltonian, with the *cis*- and *trans*-potential barriers to the internal rotation being proportional to those reported in our previous paper [1] but multiplied by a scaling factor f_{scale} . $f_{scale} = 0$ corresponds to the zero-barrier limit, and $f_{scale} = 1$ to the best-fit potential energy function [1]. This later forms a reasonable approximation for the high-barrier limit. A portion of the lowest energy part of this diagram for J=6 is reproduced here as Fig. 2. The magnitude of the torsional splitting changes with K=3n, 3n+1, and 3n+2. Examination of this correlation diagram leads to a conceptual understanding of the staggering of energy level splitting with *K*. Indeed, the diagram clearly shows that the cyclic variation of the magnitude of the torsional splitting originates in the energy level structure in the zero-barrier limit.

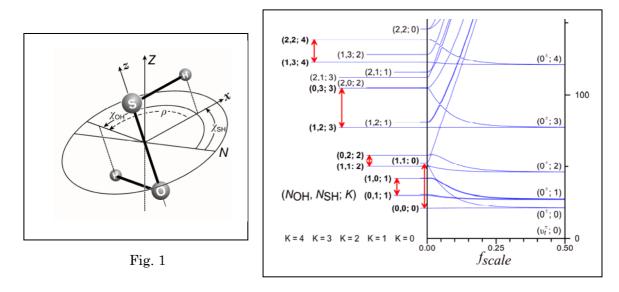


Fig. 2

- [1] S.C. Ross, K.M.T. Yamada, and F. Ito, PCCP, 12, 11133--11150 (2010).
- [2] K.M.T. Yamada, G. Winnewisser, and P. Jensen, J. Mol. Struct. 695-696, 323-337 (2004); K.M.T. Yamada, P. Jensen, S.C. Ross, O. Baum, T.F. Giesen, and S. Schlemmer, J. Mol. Struct. 927, 96-100 (2009).
- [3] J.T. Hougen, Can. J. Phys. 62, 1392-1402 (1984); J.T. Hougen and B.M. DeKoven, J. Mol. Spectrosc. 98, 375-391 (1983).
- [4] R.I. Ovsyannikov, V.V. Melnikov, W. Thiel, P. Jensen, O. Baum, T.F. Giesen, and S.N. Yurchenko, J. Chem. Phys. 129, 154314--1--9 (2008).
- [5] K.M.T. Yamada and S.C. Ross, J. Mol. Spectrosc. in press (2011), doi:10.1016.