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ABSTRACT: To obtain a conceptual explanation of the peculiar variation of the torsional 
tunneling splitting with rotational quantum number, K, observed in HSOH, we have 
determined the energy correlation diagram between two limiting cases. These are the 
free-rotor (zero-barrier) limit and the high-barrier limit. To do this we used the 
reduced-dimension Generalized Semi-Rigid Bender (GSRB) approach. In this context we also 
present the symmetries and appropriate quantum numbers for the states in the two limiting 
cases. 

 

Introduction 
The ro-torsional spectra of HSOH exhibit exotic behavior due to strong coupling of torsion 

and rotation. The observed torsional tunneling splitting changes its magnitude cyclically with 
the rotational quantum number, K, with a period depending on the ratio of the end moieties. In 
our previous paper [1] we reported that in the low-J region (J<10) the observed spectra can be 
reproduced by a reduced-dimension model based on the GSRB approach. We also compared 
our results with those obtained by other approaches: an algebraic model [2], based on the 
high-barrier matrix formalism [3], and a full-dimensional TROVE model [4]. Here we present a 
conceptual explanation of this cyclic variation of the torsional splitting for HSOH. We do this 
by inspecting the energy-level correlation between states at the free-rotor (zero-barrier) limit 
and at the more physical high-barrier limit [5]. In this context we also present the symmetries 
and appropriate quantum numbers for the states in these two limits.  
Limiting cases: high-barrier limit and zero-barrier limit 

At the high-barrier limit, the torsional energy levels of HSOH resemble those of a harmonic 
oscillator but with each level doubled by the tunneling effect. The ro-torsional quantum states 
of HSOH in the ground vibrational state can be represented by the product of a torsional 

wavefunction and a Wang-type rotational wavefunction, |vt
±>|J,K>γ. vt=0 for the ground state 

and the components of the tunneling doublet are distinguished by symmetry ± (+ for 
symmetric and − for anti-symmetric with respect to the symmetry operation E*). The Wang 
basis is expressed for K>0 as |J,K>γ = ( |J,K> +(−1)γ|J, −K> )√2, which is of e/f-symmetry for 
K+γ =even/odd, respectively.  

At the zero-barrier limit, ro-torsional energy term values are given in the reduced-dimension 
model (torsion and rotation) as, approximately, 

E(NOH,NSH;J,K) = AOHNOH
2+ASHNSH

2+B[J(J+1)-K2].                   (1) 
Here AOH and ASH are the rotational constants around the axis of internal rotation of OH and 
SH moiety, respectively, and B is the rotational constant in the diatomic molecule 
approximation. NOH and NSH are the quantum numbers representing the rotation of the OH 
and SH moieties around the internal rotation axis: NOH = |nOH|, NSH = |nSH|, and 
K=|k|=|nOH+nSH|. The corresponding eigenfunction is given as, 



|nOH,nSH;J,k> =N |nOH,nSH;k> SJ,k(θ,φ) =N’exp[inOHχOH] exp[inSHχSH] SJ,k(θ,φ),   (2) 
where the angle variables χOH and χSH are as shown in Fig. 1 and N and N’ are normalization 
factors. The torsion-z-rotation part of the wavefunction |nOH,nSH;k> is symmetrized by taking 

the Wang-type linear combinations, |NOH,NSH;K>Γ =(|NOH,NSH;K> +(−1)Γ |−NOH, −NSH; −K>)/√2, 
which are of e/f-symmetry for K+Γ =even/odd, respectively. 
Correlation Diagram 

The qualitative energy-level-correlation diagram can be readily obtained by connecting 
levels of the same K and same symmetry between these two limits, step-by-step from the 
lowest energy level. We obtained a more quantitative correlation by calculating the 
ro-torsional energies using the GSRB Hamiltonian, with the cis- and trans-potential barriers to 
the internal rotation being proportional to those reported in our previous paper [1] but 
multiplied by a scaling factor fscale. fscale =0 corresponds to the zero-barrier limit, and fscale =1 to 
the best-fit potential energy function [1]. This later forms a reasonable approximation for the 
high-barrier limit. A portion of the lowest energy part of this diagram for J=6 is reproduced 
here as Fig. 2. The magnitude of the torsional splitting changes with K=3n, 3n+1, and 3n+2. 
Examination of this correlation diagram leads to a conceptual understanding of the staggering 
of energy level splitting with K. Indeed, the diagram clearly shows that the cyclic variation of 
the magnitude of the torsional splitting originates in the energy level structure in the 
zero-barrier limit. 
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