Infrared Absorption Spectrum of Hydroperoxymethyl Formate [HC(0)OCH₂OOH] Produced in the Reaction of the Criegee Intermediate CH₂OO with HCOOH (Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan ^a Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan ^b) Jou-Wei Su^a, Chen-An Chung^a, and Yuan-Pern Lee^{a,b}

The Criegee intermediates, which are carbonyl oxides produced in ozonolysis of unsaturated hydrocarbons,¹ play important roles in the production of OH, aerosols and organic acids in the atmosphere. Criegee intermediates react readily with other atmospheric species such as NO₂, SO₂, $(H_2O)_2$ and HCOOH. The reaction of CH₂OO with HCOOH was reported to be extremely rapid, with a rate coefficient of 1.1×10^{-10} cm³ molecule⁻¹ s⁻¹.² Quantum-chemical calculations indicate that the reaction of CH₂OO + HCOOH proceeds through a barrierless association path to form hydroperoxymethyl formate (HPMF, HC (O) OCH₂OOH),³ in agreement with experimental results by Neeb et al, who observed HPMF and formic acid anhydride (FAN, (CHO)₂O) in ozonolysis experiments; FAN and water was proposed to be produced from dissociation of HPMF.⁴

In this work, a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of the reactants and products during the reaction of CH₂00 with HCOOH in a flow system. CH₂00 were produced from the reaction of CH₂I with O₂, CH₂I was produced from photolysis of CH₂I₂. ⁵ Observed bands with origins at 887, 925, 1052, 1115, 1169. 5, 1341. 5, 1391 and 1760 cm⁻¹ can be assigned to ν_{16} , ν_{15} , ν_{13} , ν_{12} , ν_{11} , ν_{9} , ν_{7} , and ν_{5} modes of HPMF, respectively. The observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/aug-cc-pVTZ method. Our results also show that the rate coefficient of the reaction CH₂00 + HCOOH is $(7\pm0.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, smaller than the previously reported value.²

- 1. R. Criegee and G. Wenner, J. Liebigs Ann. Chem. 564, 9 (1949).
- 2. O. Welz et al, Angew. Chem., Int. Ed. 53, 4547 (2014).
- 3. Long et al., Journal of Molecular Structure: THEOCHEM 916, 159 (2009).
- 4. Neeb et al., Chemical Physics Letters 246, 150-156 (1995).
- 5. 0. Welz et al., *Science* **335**, 204 (2012).