Vibronic Coupling in the $\tilde{X}^{-2}A'_2$ state of NO₃

Masaru Fukushima and Takashi Ishiwata

Faculty of Information Sciences, Hiroshima City University Asa-Minami, Hiroshima 731-3194, Japan

For the vibrational structure of the $\tilde{X} {}^{2}A'_{2}$ state of NO₃, two assignments are proposed; a traditional assignment and one proposed by Stanton [1]. The major difference is the position of the v_{3} fundamental, at 1492 and ~1000 cm⁻¹, respectively. To solve this problem, we have measured dispersed fluorescence (DF) spectrum from the single vibronic levels (SVL's) of the \tilde{B} state of jet cooled NO₃, for both isotopomers, ¹⁴NO₃ and ¹⁵NO₃ [2]. The spectrum from the vibration-less level consists of three regions; (I) regions around 1050 and 1500 cm⁻¹, (II) the region below 1850 cm⁻¹ except (I), and (III) the region above 1850 cm⁻¹. Region II displays relatively regular vibrational structure including v₁ fundamental and v₄ progressions, 4⁰_n, n = 0, 1, 2, 3, and 1⁰₁4⁰_n, n = 0, 1, 2. Region III possesses congested structure with levels thought to be heavily mixed difficult to vibrationally characterize. In this paper, we will focus the vibrational structure of the region I and the 2nd over-tone region of v₁, ~2000 cm⁻¹, in region III, and discuss vibronic coupling in the $\tilde{X} {}^{2}A'_{2}$ state.

First of all, three important findings are described. (1) We have found a new vibronic band very close to the v_1 fundamental in region I [2], and thus two relatively intense vibronic bands are observed in the v_1 fundamental region, ~1050 cm⁻¹, on the DF spectrum. In contrast, no bands have been detected in this region of the IR spectrum [3]. (2) In the 1500 cm⁻¹ region of (I), only one intense band at 1500 cm⁻¹ is observed on DF, while two bands at 1492 and 1499 cm⁻¹, which are e' and a_1 ' bands, respectively, are identified on IR hot bands [3]. (3) In the 2 v_1 region, two bands, at 2010 and 2118 cm⁻¹, are observed on DF, and both are attributed to be a_1 , because they have not been observed on IR [4]. The two bands show regular isotope shift [2]. Assuming Stanton's assignment, the levels at 1055 cm⁻¹ (observed only on DF) and 1492 cm⁻¹ (observed only on IR) will be attributed to the e' bands of the v_3 fundamental and $v_3 + v_4$ combination levels, respectively, and his calculated DF spectrum guite nicely reproduces the observed [1]. However, this calculated DF spectrum does not match the observed DF spectrum. If the new band at 1055 cm⁻¹ is labeled an e' band of the v_3 fundamental, then the e' band of the combination, i.e. the 1492 cm⁻¹ band, should be observed even in DF, but it isn't, while the a_1 ' band at 1500 cm⁻¹ was remarkably observed in both DF and IR. In addition to this mismatch at ~1500 cm⁻¹, it is unusual for IR that no e' bands in region I have been observed; e.g. the v₃ fundamental, expected to lie at 1055 cm⁻¹, should be observed in the IR spectrum, because the e' band of the combination at 1492 cm⁻¹ is observed as the strongest band. Generally, a_1 bands are preferentially observed in DF. Thus we think that the two intense bands at 1055 and

1499 cm⁻¹ on DF are both attributed to a_1 . The inverse isotope shift of the v_1 fundamental lying close to the former [2] is easily understandable, and the major component of the latter is thought to be the 2nd over-tone of v_2 (this is an out-of-plane umbrella mode, and the fundamental is at 762 cm⁻¹ [3]), in which a favorable Franck-Condon factor is expected. This raises the question, what is the 1055 cm⁻¹ a_1 ' band ?

We assign the 1055 cm⁻¹ band to the 3rd over-tone of the v_4 asymmetric (e') mode, 3 v_4 (a_1'). We also assigned a weaker band at about 160 cm⁻¹ above the new band to one with a final vibrational level of 3 v_4 (a_2'). The 3 v_4 (a_1') and (a_2') levels are ones with $l = \pm 3$. On the basis of experimental evidence of the strong correlation of the spinorbit constant upon the v_4 vibrational level, Hirota proposed a new vibronic coupling mechanism which suggests degenerate vibrational modes induce electronic orbital angular momentum even in non-degenerate electronic states and $K = \Lambda + l$ (this is written as $\overline{\Lambda} = \Lambda + l$ in [5]) should be conserved, where Λ is the induced Λ [5]. According to this, one of the components of the 3rd over-tone level, K = +3; $\Lambda = 0$; $v_4 = 3$, l =+3, can have contributions of three components, $|+3;+1;3,+2\rangle$, $|+3;+2;3\rangle$, +1, and |+3;+3;3,0. The counter pair of the state, $|-3;0;3,-3\rangle$, has contributions of $|-3; -1; 3, -2\rangle$, $|-3; -2; 3, -1\rangle$, and $|-3; -3; 3, 0\rangle$. Accordingly, it is expected that there are sixth-order vibronic couplings, $(q_{+}^{2}Q_{+}^{4} +$ $q_{-}^{2}Q_{-}^{4}$) and $(q_{+}^{4}Q_{+}^{2} + q_{-}^{4}Q_{-}^{2})$, for the 1st and 2nd components, respectively, among the three between the two 3 v₄ components with $l = \pm 3$, $|+3; 0; 3, +3\rangle$ and $|-3; 0; 3, -3\rangle$. The two 6th order couplings above can be interpreted as 2nd order coupling of the 3rd order couplings, $(q_+ Q_+^2 + q_- Q_-^2)^2$: Hirota-type [6] and $(q_+^2 Q_+ + q_- Q_-^2)^2$ $(q_2^2 Q_2)^2$: dynamical-Jahn-Teller-type, respectively. In the case of Renner-Teller interaction which is a typical of vibronic interactions, the 6th order couplings are weaker than the Renner-Teller term (the 4th order term, $(q_+^2 Q_-^2 + q_-^2 Q_+^2)$), but stronger than the 8th order term, $(q_+^4 Q_-^4 + q_-^4 Q_+^4)$. It is well known in linear molecules that the former, the 4th order term, shows huge splitting, comparable with vibrational frequency, among the vibronic levels of Π electronic states, and the latter, the 8th order term, shows considerable separation, ~10 cm⁻¹, for Δ electronic states. Consequently, the ~160 cm⁻¹ splitting at $v_4 = 3$ is attributed to the 6th order interaction. The relatively strong intensity for the band to 3 v_4 (a_1) can be interpreted as part of the huge 0-0 band intensity, because the 3 v_4 (a_1') level, $|\pm 3; 0; 3, \pm 3\rangle$, can connect with the vibration-less level, | 0; 0; 0, 0), through the Hirota- and dynamical-Jahn-Teller-types 3 v_4 (a_1') has two-fold intensity because of the vibrational coupling above. wavefunction, $|+3; 0; 3, +3\rangle + |-3; 0; 3, -3\rangle$, while negligible intensity is expected for $3 v_4 (a_2')$ with $|+3; 0; 3, +3 \rangle - |-3; 0; 3, -3 \rangle$ due to cancellation.

J. F. Stanton, *J. Chem. Phys.* <u>126</u>, 134309 (2007) and 69th ISMS, paper MI16.
M. Fukushima and T. Ishiwata, 68th ISMS, paper WJ03.

- [3] K. Kawaguchi et al., J. Phys. Chem. A 117, 13732 (2013).
- [4] T. Ishiwata et al., J. Phys. Chem. A <u>82</u>, 980 (2010). [5] E. Hirota, J. Mol. Spectrosco. <u>310</u>, 99 (2015).
- [6] E. Hirota, K. Kawaguchi, T. Ishiwata, and I. Tanaka, J. Chem. Phys. 95, 771 (1991).