One-photon vacuum ultraviolet mass-analyzed threshold ionization

(VUV-MATI) spectroscopy of crotonaldehyde

(Kangwon National Univ.) <u>Sung Man Park</u>, Hong Lae Kim, and Chan Ho Kwon*

E-mail:chkwon@kangwon.ac.kr

We measured the cationic vibrational spectrum of crotonaldehyde (2-butenal) using one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The VUV radiation was generated by four-wave difference frequency mixing in Kr gas. From the origin band in the MATI spectrum, the adiabatic ionization energy of crotonaldehyde determined to be 9.7501 \pm 0.0005 eV (78642 \pm 0.0004 cm⁻¹). This value is in agreement with the previous one. To analyze the cationic vibrational spectrum, we performed the Franck-Condon simulation at MO62x/aug-ccpVDZ level, which revealed to be four stereo isomers of trans-*s*-*trans*, trans-*s*-*cis*, cis-*s*-*trans*, and cis-*s*-*cis* crotonaldehyde. Most of vibrational peaks observed in the spectrum were assigned to that of trans-*s*-*trans* crotonaldehyde and the remained peaks were assigned to the vibrational peaks of trans-*s*-*cis*, cis-*s*-*trans*, or cis*s*-*cis* crotonaldehyde. The adiabatic ionization energies of trans-*s*-*cis*, cis-*s*-*trans*, and cis-*s*-*cis* crotonaldehyde were determined to be 9.7619 \pm 0.0005 eV (78737 \pm 4 cm⁻¹), 9.7121 \pm 0.0005 eV (78335 \pm 4 cm⁻¹), and 9.6481 \pm 0.0005 eV (77819 \pm 4 cm⁻¹), respectively.