銀および銅・アンモニア錯体の ZEKE 光電子分光 (産総研ナノテク部門) 〇宮脇 淳・菅原孝一

ZEKE spectroscopy of the silver- and copper-ammonia complexes

Jun Miyawaki and Ko-ichi Sugawara (Nanotechnology Research Institute, AIST)

The single-photon zero kinetic energy (ZEKE) photoelectron spectra of the silverand copper-ammonia 1:1 complexes have been observed to investigate the vibrational
structures of their corresponding ions. The adiabatic ionization potentials of AgNH₃
(47580cm⁻¹) and CuNH₃ (46468cm⁻¹) decrease from those of the free metal atoms by 1.67 eV
and 1.97eV, respectively. The intermolecular stretching frequencies were determined to be
375 cm⁻¹ for Ag⁺NH₃ and 463 cm⁻¹ for Cu⁺NH₃. These observations indicate that the Cu⁺-NH₃
binding is stronger than the Ag⁺-NH₃ binding, being consistent with the previous collision
induced dissociation experiments. In addition, the smaller red-shift of the origin band of
CuNH₃ on deuteration and the different Franck-Condon patterns of the spectra indicate that
the CuNH₃ complexes are more strongly bound than AgNH₃ also in the neutral states. The
binding energies of these neutral complexes derived from the observed I.P. shifts and the
previously reported binding energies of M⁺-NH₃ are consistent with this observation. The
stronger binding of CuNH₃ in the neutral ground state is mostly due to the more efficient *sd*hybridization that alleviates the repulsion between the metal atom and the ammonia molecule.