Infrared intensity and spectra of water clusters in helium droplets : N_2-H_2O , O_2-H_2O , and $Ar-H_2O$

Susumu Kuma Division of Chemistry, Graduate School of Science, Kyoto University

Takamasa Momose

Department of Chemistry and Department of Physics and Astronomy, The University of British Columbia Interactive Research Center of Science, Tokyo Institute of Technology

> Mikhail N. Slipchenko, Kirill E. Kuyanov, and Andrey F. Vilesov Department of Chemistry, University of Southern California

The infrared spectra of N₂–H₂O, O₂–H₂O and Ar–H₂O complexes in He droplets were measured in the range of the fundamental stretching vibrational bands of water molecules. The infrared intensity of the anti-symmetric stretching bands in these complexes were found to be slightly increased compared to that in single H₂O molecules, but the increase was only ~ 30 % in the case of N₂–H₂O complex. The spectra show that H₂O in O₂–H₂O and Ar–H₂O rotates nearly freely, while no indication of H₂O internal rotation was observed in N₂–H₂O spectra. The conformation of the N₂–H₂O complexes was estimated from their rotational constants. The difference between the intermolecular potential of O₂–H₂O and that of Ar–H₂O will be discussed based on the analysis of the rotational structures of H₂O in the spectra.