H₂O, CO₂, N₂Oの二量体の相互作用エネルギー Interaction energies of (H₂O)₂, (CO₂)₂, and (N₂O)₂

(¹京大院工, ²国立環境研, ³名大院環境) ○中山智喜¹, 福田久人¹, 上川拓磨¹, 天野達夫¹, 佐藤啓文¹, 榊茂好¹, S. Aloisio¹, 森野勇², 井上元³, 川崎昌博¹ (¹Kyoto Univ., ²NIES, ³Nagoya Univ.) OT. Nakayama¹, H. Fukuda¹, T. Kamikawa¹, T. Amano¹, H. Sato¹, S. Sakaki¹, I. Morino², G. Inoue³, and M. Kawasaki¹

Buffer-gas pressure broadenings for the $v_1 + v_3$ band of H₂O at 1.3 - 1.4 µm, (3 0⁰ 1)_{III} - (0 0 0) band of CO₂ at 1.6 µm, and $3v_3$ band of N₂O at 1.5 µm for variety of buffer gases (Ne, Ar, Kr, Xe) were investigated at room temperature with using continuous-wave cavity ring-down spectroscopy. The average interaction energies of (H₂O)₂, (CO₂)₂, and (N₂O)₂ under the room temperature condition were evaluated from the pressure broadening coefficients for rare gases using the Permenter-Seaver's relation [1]. The interaction energies of 1630 ± 230, 470 ± 40, and 610 ± 120 K were determined for (H₂O)₂, (CO₂)₂, and (N₂O)₂, respectively. The results were compared with theoretical calculation [2].

【はじめに】H₂Oの二量体(H₂O)₂は、赤外領域にブ ロードな吸収を持つことから大気における放射線収 支の決定に寄与を持つと考えられている。この二量 体形成の相互作用エネルギーについては、理論的 研究が広く行われている。しかしながら、その実験 的決定は表1に示した熱伝導率や赤外吸収強度の 温度・圧力依存計測による数例が報告されているの みである[3-6]。また、(CO₂)₂および(N₂O)₂の相互作 用エネルギーの実験的研究については報告例がな い。本研究では、連続光半導体レーザーを用いた キャビティリングダウン分光法(cw-CRDS)により、 H₂O, CO₂, N₂Oの近赤外振動回転スペクトルを高精 度に測定し、様々な希ガスによる吸収線幅の圧力 広がり係数を決定した。得られた圧力広がり係数を

表 1. H₂O, CO₂, N₂O二量体の相互作用エネルギー

Species	Interaction energy (K)	Method	Ref.
(H ₂ O) ₂	1630 ± 230	Pressure broadening ^a	This worK
	1810 ± 250	Thermal conductivity ^b	[3]
	2000 ± 450	Infrared absorption ^c	[4]
	1810 ± 350	Infrared absorption c	[5]
	1910 ± 40	Infrared absorption ^c	[6]
	1670	Theoretical	This worK
(CO ₂) ₂	470 ± 40	Pressure broadening a	This worK
	640	Theoretical	This worK
(N ₂ O) ₂	610 ± 120	Pressure broadening ^a	This worK
	820	Theoretical	This worK

a. 圧力広がり係数測定、b. 熱伝導率測定、

c. 赤外吸収の温度もしくは圧力依存性測定

用いて、Parmenter-Seaver関係式[1]からこれら二量体の室温における平均相互作用エネルギーを決定した。さらに、得られた結果をab intio 分子軌道計算を用いたモンテカルロシュミレーション理論計算結果と比較した[2]。

【実験】検出光光源として、外部共振器型近赤外半導体レーザー(1340-1440 nm, 1520-1620 nm)を用いた。レーザー光を音響光学素子(AOM)によって屈折させた後、高反射率ミラー(*R*>0.999)を50 cm隔てて構成した光学キャビティに導入した。検出側のミラーからの透過光信号強度がある一定のレベルまで到達すると、AOMによって入射光を遮断した。その時点から、キャビティ内に定存していた光はリングダウンを開始し、信号強度は指数関数的に減衰する。減衰速度からH₂O, CO₂もしくはN₂Oによる光吸収量を得

た。 バッファーガスとしてNe, Ar, Kr, Xeを用いた。測定に用いた振動回転線は、H₂O: $v_1 + v_3$ バンドの ($J'_{Ka'Kc'} - J''_{Ka''Kc''}$) = $(10_{37} - 9_{36})$ 遷移、CO₂: $(3 0^0 1)_{III}$ - (0 0 0)バンドのR(0)遷移、N₂O: $3v_3$ バンドのP(3) 遷移である。 0.001 cm⁻¹ごとにレーザー波長を変化させ吸収スペクトルを得た。 実験は 296 Kで行った。

【結果と考察】得られたスペクトルをVoigt関数でフィットし、ローレンツ幅を求めた。その際、ドップラー幅は測定時の温度に対応する値に固定した。得られたローレンツ幅をバッファーガスの圧力に対して プロットした直線の傾きから、圧力広がり係数 γ(cm⁻¹atm⁻¹)を決定した。Parmenter-Seaver関係式を 用いて、得られた圧力広がり係数から、二量体の 平均相互作用エネルギー(ε/k_B, k_B:ボルツマン定数) を見積もった。希ガス衝突における圧力広がり断面 積の対数を、希ガス同士のL-J ポテンシャル深さに 対しプロットすると傾きβは、

 $\beta = (\varepsilon/k_{\rm B}T^2)^{1/2}$

で表される。図1にH₂O、図2にCO₂およびN₂Oに対 する結果を示した。図1および図2の直線の傾きか ら、H₂O, CO₂, N₂O各二量体の300 Kにおける平均 相互作用エネルギー、1630±230,470±40,610± 120 Kをそれぞれ得た。

本研究の(H₂O)₂に対する結果は、過去の実験値 に比べて10-20%程度小さい(表1)。この違いの要因 として、過去の報告値がT = 0 Kにおける最安定配 置に対する相互作用エネルギーを求めているのに 対し、本研究では、296 Kの条件下での様々な配置 における平均値を測定しているからである。

そこで、(H₂O)₂については、*ab intio* 分子軌道計 算を用いたモンテカルロシュミレーション (MP2/6-31++G(d,p))を行い、室温における全方位 に対する実効相互エネルギー(ゼロ点エネルギーを 考慮)を見積もった。また、(CO₂)₂および(N₂O)₂につ いては、GaussianO3 を用いてUMP2/6-31G(d)により 決定した安定構造と各安定構造間の室温における 平衡定数から、平均相互作用エネルギーを見積も

図 1. 希ガスとの衝突における $H_2Ov_1 + v_3$ バンド($J'_{Ka'Kc'} - J''_{Ka'Kc'}$) = (10₃₇ - 9₃₆)の圧力広がり断面積、横軸は希ガスのL-Jポテンシャル値

図 2. 希ガスとの衝突におけるN₂O 3v₃ バンド P(3)およびCO₂の(3 0⁰ 1)_{III}-(0 0 0)バンドR(0)の 圧力広がり断面積、横軸は希ガスのL-Jポテンシ ャル値

った。その結果、(H₂O)₂, (CO₂)₂および(N₂O)₂の平均相互作用エネルギー、1670, 640, および 820 Kを得た。得られた計算結果は、本研究で得た実験値と概ね一致した。

[1] Lin et al., J. Chem. Phys., 70, 5442 (1979). [2] Nakayama et al., Chem. Phys. (in press).

- [3] Curtiss et al., J. Chem. Phys. 71, 2703 (1979). [4] Bondarenko and Gorbaty, Mol. Phys., 74, 639 (1991).
- [5] Jin and Ikawa, J. Chem. Phys. 119, 12432 (2003).[6] Cormier et al., J. Chem. Phys. 122, 114309 (2005).