Accurate Analytic Potentials for the $A^{3}\Pi_{1u}$ and $X^{1}\Sigma_{g}^{+}$ states of Br₂ by Direct Potential Fitting using VUV, UV, VIS and NIR Data

(Tokyo Polytechnic University¹ Univ. of Waterloo²) ⊖Tokio Yukiya¹, Nobuo Nishimiya¹,

Masao Suzuki¹ and Robert J.Le Roy²

Abstract Doppler-limited rovibrational absorption spectra of the $A^3\Pi_{1u} \leftarrow X^1\Sigma_g^+$ electronic transition of Br₂ are measured in the 12072–14249 cm⁻¹ region by a tone burst modulation method using a Ti:sapphire ring laser and Br₂ with natural isotopic abundance. *P*-, *Q*-, and *R*-branch lines belonging to the $v' \leftarrow v'' = (2 - 16) \leftarrow (2 - 8)$ bands of ⁷⁹Br₂ and ^{79,81}Br₂, and the $v' \leftarrow v'' = (2 - 5) \leftarrow 6$ bands of ⁸¹Br₂ are observed and assigned. A combined-isotopologue direct-potential-fit (DPF) analysis is used to determine accurate analytic potential energy functions for the $A^3\Pi_{1u}$ and $X^1\Sigma_g^+$ states from a combination of our new results with fluorescence data for the X state in the UV and VUV regions, magnetic rotation spectrum data for the A - X system, and X state term values obtained from FT-IR results for the B - X system in the VIS region. The A - X electronic isotope shift and centrifugal Born-Oppenheimer breakdown (BOB) effects in the $A^3\Pi_{1u}$ state are also determined from his analysis. Band constants of the $A^3\Pi_{1u}$ state obtained from the recommended analytic potential energy function are compared with those obtained from a 'traditional' parameter-fit analysis.

Introduction: The first observations of the $A^{3}\Pi_{1u} - X^{1}\Sigma_{g}^{+}$ system of the bromine dimer were reported by Kuhn and Nakamura in 1926 [1, 2]. Since then there have been numerous studies of these states. In 1982, Venkteswarlu *et al.* measured fluorescence series transitions into v'' = 0 - 76 of the $X^{1}\Sigma_{g}^{+}$ state in the Vacuum UV region [3]. Gerstenkorn *et al.* observed the $B^{3}\Pi_{0+u} - X^{1}\Sigma_{g}^{+}$ system using a Fourier Transform Spectrometer and reported an accurate Dunham expansion description for the lower portion of the $X^{1}\Sigma_{g}^{+}$ state well in 1987[4]. Accurate Laser-Induced fluorescence transitions into to v''(X)=2-29 were reported by Focsa *et al.* in 2000 [5], and analogous lower resolution (± 0.27 cm⁻¹) transitions into v''(X) = 28 - 44 were obtained by Postell in 2005 [6].

For the $A^{3}\Pi_{1u}$ state, Clyne and Coxon determined the absolute vibrational quantum numbering of the $A^{3}\Pi_{1u}$ state in 1970[7]. Shortly afterwards, Coxon observed absorption into v' = 7 - 24 of the $A^{3}\Pi_{1u}$ state in the visible and near infrared regions [8]. In 1999 Boone used Doppler-limited magnetic rotation spectroscopy with a dye laser [9, 10] to measure some 2975 lines of 55 bands in the $A^{3}\Pi_{1u} \leftarrow X^{1}\Sigma_{g}^{+}$ spectrum of $^{79,79}\text{Br}_{2}$ for which $13 \leq v' \leq 37$. His highest vibrational level is bound by only 2 cm⁻¹.

While most vibrational levels of the A state have been measured by then, poor Franck-Condon factors had prevented the observation of levels v'(A) = 0 - 6. In the present study, we have measured the absorption spectrum belonging to v'(A) = 2 - 16 for the $A^3\Pi_{1u}$ state using a Ti:Sapphire ring laser, and analytic potential functions for the $A^3\Pi_{1u}$ and $X^1\Sigma_g^+$ states of Br₂ have been determined using a combined-isotopologue directpotential-fit (DPF) analysis of these data together with all other available high quality data for the $A^3\Pi_{1u}$ and $X^1\Sigma_g^+$ states.

Experiment: Figure 1 presents a schematic view of the experimental setup. A Ti:Sapphire ring laser (Coherent, 899–21) was used to obtain Doppler limited absorption spectra. A White-type cell (path length 8 m) was filled with Br₂ gas containing all three isotopologues in natural abundance at 10 Torr. At wavelengths shorter than 0.77μ m, the absorption lines were measured at room temperature, while the cell was heated to 150° C when absorption lines in the $0.77-0.83 \mu$ m region were measured.

Figure 1: Block diagram of the Ti:Sapphire ring laser spectrometer

Tone burst modulation was adopted as a signal detection technique. The laser source having a sideband was produced using an electro-optical modulator (EOM 191MHz). A Burst signal generated using a 191MHz source and a pulse signal (at 100KHz) generated by a mixer were input into the EOM. The absolute and relative wavelengths of the laser were measured using a wavelength meter (Burleigh WA-1500) and a confocal cavity (F.P.I) having a free spectral range (FSR) of 0.01 cm⁻¹.

Analysis: A direct-potential-fit analysis may be used to determine the molecular parameters \mathfrak{D}_e and

 r_e , and sometimes also long-range inverse-power potential coefficients. In this work, program DPotFit was used to determine these quantities and the associated potential energy functions from experimental line positions [11]. Since Br₂ has three isotopologues and there is Λ -type doubling in the $A^3\Pi_{1u}$ state, the radial Schrödinger equation is:

$$\left\{ -\frac{\hbar^2}{2\mu_{\alpha}} \frac{d^2}{dr^2} + [V_{\rm ad}^{(1)}(r) + \Delta V_{\rm ad}^{(\alpha)}(r)] + \frac{\hbar^2 [J(J+1) - \Lambda^2]}{2\mu_{\alpha} r^2} [1 + g^{(\alpha)}(r)] \\
+ sg_{\Lambda}(e/f) \,\Delta V_{\Lambda}^{(\alpha)}(r) [J(J+1)]^{\Lambda} \right\} \psi_{v,J}(r) = E_{v,J} \psi_{v,J}(r)$$
(1)

where $V_{\rm ad}^{(1)}(r)$ is the effective adiabatic potential for the reference isotopologue ($\alpha = 1$), $\Delta V_{\rm ad}^{(\alpha)}(r)$ is the difference between the effective adiabatic potentials of isotopologue- α and the reference isotopologue, $g^{(\alpha)}(r)$ is the centrifugal Born-Oppenheimer breakdown (BOB) radial function, $sg_{\Lambda}(e/f)$ is a dimensionless numerical factor for the e and f levels, and $\Delta V_{\Lambda}^{(\alpha)}(r)$ is the Λ -doubling radial strength function [11–13]. The Morse/Long-Range (MLR) form is used for the potential energy functions of the A and X states:

$$V_{\rm MLR}(r) = \mathfrak{D}_e \left\{ 1 - \frac{u_{\rm LR}(r)}{u_{\rm LR}(r_e)} e^{-\beta(r) \cdot y_p(r, r_e)} \right\}^2, \qquad u_{\rm LR}(r) = \sum_{i=1}^{\rm last} D_{m_i}(r) \frac{C_{m_i}}{r^{m_i}}$$
(2)

where r is the internuclear distance, $\beta(r)$ is the exponent coefficient function, $y_p(r, r_{\text{ref}}) = \frac{r^p - r_{\text{ref}}^p}{r^p + r_{\text{ref}}^p}$ is a dimensionless radial variable, C_{m_i} are long range coefficients and $D_{m_i}(r)$ are damping functions [14, 15].

Figure 2: MLR Potentials of the A and XStates of Br₂, and Potential curve of the A'state reported by Sur and Van Marter [16, 17].

Reference

- [1] H. Kuhn, Z. Physik 39 (1926) 77–91.
- [2] G. Nakamura, Mem. Coll. Sci. Kyoto A 9 (1926) 315– 353.
- [3] P. Venkateswarlu, V. N. Sarma, Y. V. Rao, J. Mol. Spectrosc. 96 (1982) 247–265.
- [4] S. Gerstenkorn, P. Luc, A. Raynal, J. Sinzelle, J. Physique 48 (1987) 1685–1696.
- [5] C. Focsa, H. Li, P. F. Bernath, J. Mol. Spectrosc. 200 (2000) 104–119.
- [6] D. Postell, D. Dolson, G. Perram, J. Mol. Spectrosc. (to be published).
- [7] J. A. Coxon, M. A. A. Clyne, J. Phys. B 3 (1970) 1164– 1165.
- [8] J. A. Coxon, J. Mol. Spectrosc. 41 (1972) 438–555.
 [9] C. D. Boone, PhD Thesis University of British
- [9] C. D. Boone, PhD Thesis University of British Columbia (1999).
 [10] C. D. Boone, F. W. Dalby, I. Ozier, J. Phys. Chem. 113
- [10] C. D. Boone, F. W. Dalby, I. Ozier, J. Phys. Chem. 113 (2000) 8594–8607.
- [11] R. J. Le Roy, J. Seto, Y. Huang, 2007. DPotFit 1.2: A Computer Program for fitting Diatomic Molecule Spec-

Results: The data reported by Venkteswarlu et al., Boone, Focsa et al., Postell et al. and Gerstenkorn et al. were combined with those obtained here, and analysed using program DPotFit [11]. This X state data set spans 99.2% of the ground-state potential well, with the highest observed level being bound by only 129 cm^{-1} . The observed A state levels are v'(A) = 2 - 37, with the highest observed vibrational level lying less than 2 cm^{-1} from the dissociation limit. Figure 2 shows the well depths \mathfrak{D}_e , equilibrium internuclear distances r_e , and potential energy curves determined for the A and X states, where the integer N is the power of the polynomial defining the exponent coefficient function $\beta(r)$ while p, q and $r_{\rm ref}$ are non-physical parameters defining the dimensionless radial variables $y_{p/q}(r, r_{ref})$. Experimental values for the long-range inverse-power C_5 constant of the A state and for the A - X electronic isotope shift are also determined. The $A'^{3}\Pi_{2u}$ state potential is also plotted in this Figure. The A and A' state potentials become very close at $r \approx 4 \,\text{Å}.$

> tra to Potential Energy Functions, University of Waterloo Chemical Physics Research Report CP-664 ; see http://leroy.uwaterloo.ca/programs/.

- [12] Y. Huang, R. J. Le Roy, J. Chem. Phys. 119 (2003) 7398–7416.
- [13] R. J. Le Roy, D. R. T. Appadoo, K. Anderson, A. Shayesteh, I. E. Gordon, P. F. Bernath, J. Chem. Phys. 123 (2005) 204304/1–12.
- [14] R. J. Le Roy, N. Dattani, J. A. Coxon, A. J. Ross, P. Crozet, C. Linton, J. Chem. Phys. 131 (2009) 204309:1–17.
- [15] R. J. Le Roy, C. C. Haugen, J. Tao, H. Li, Mol. Phys. 109 (2011) 435–446.
- [16] A. Sur, J. Tellinghuisen, J. Mol. Spectrosc. 88 (1981) 323–346.
- [17] T. A. Van Marter, Y. Lu, M. C. Heaven, E. Hwang, P. J. Dagdigian, J. Tellinghuisen, J. Mol. Spectrosc. 177 (1996) 311–319.