Quantum Monte Carlo Prediction of Vibrational Frequency Shifts of OCS-(He)_N Clusters (Jilin Univ.^a) <u>Hui Li^a</u>

High resolution spectra of OCS-(He)_N clusters with N up to 39 in the microwave and 72 in the infrared regions have been studied, in the region of the v_3 (O-C stretch, 2062 cm⁻¹) fundamental band of OCS.¹ By fitting to the rotation-vibration transitions for each cluster size, the vibrational band origins v_0 and rotational constants *B* were obtained as functions of *N*. Quantum Monte Carlo simulation predictions of v_0 and B for OCS-(He)_N clusters have been found to agree well with experiment for small *N* values.² However, for larger cluster *N*>*12*, the theoretical results² are in poor agreement with experiment due to their effective two-dimensional 2D potential energy surfaces for He interacting with ground state or vibrationally excited (v_3 =1) of OCS were based on ab initio calculations in which the Q₁ normal-mode coordinate was held fixed at its equilibrium geometry. Our previous works for CO₂-(He)_N³ and CO₂-(pH₂)_N⁴ clusters show that this is a poor approximation. Moreover, the long-range parts of the analytic functions used to represent their surfaces were based on free fits to the *ab initio* points, and not on known theoretical values of the long-range potential coefficients and their anisotropies, a fact of which gives rise to unphysical angular oscillations in the resulting difference potential, and hence to incorrect predicted shifts for the larger clusters.

In this work, I determined a four-dimensional analytical 'Morse/Long-Range' potential energy surface for the OCS-He bimer, which explicitly depends on the Q_1 , Q_3 for stretching vibrational motion of OCS, and also incorporates the correct angle-dependent inverse-power long-range behavior. Having the correct long-range potential is important for providing a good description of medium to large size clusters. I have used this new potential in path-integral Monte Carlo simulations with perturbation theory approach to predict both the effective rotational constant and the shift of the v_3 band origin for OCS doped in He clusters with *N* up to saterate limit.

¹A.R.W. McKellar, Y. Xu and W. Jäger, *Phys. Rev. Lett.* 97, 183401 (2006).

²F. Paesani, and K. B. Whaley, J. Chem. Phys. 121, 4180 (2004).

³H. Li, N. Blinov, P.-N. Roy, and R. J. Le Roy J. Chem. Phys. **130**, 144305 (2009).

⁴H. Li, R. J. Le Roy, P.-N. Roy, and A.R.W. McKellar Phys. Rev. Lett. 105, 133401 (2010).