ホロカソード放電と組み合わせた Cavity Ring Down 分光装置の開発 (東京理科大院総合化学) 〇松下友樹・伊藤邦朗・荒木光典・阿部恭子・築山光一

Development of Cavity Ring Down spectrometer with hollow cathode discharge

(Tokyo Univ. of Science) Y. Matsushita, K. Ito, M. Araki, K. Abe, and K. Tsukiyama

We have developed Cavity Ring Down (CRD) spectrometer with a hollow cathode discharge to detect unstable molecules. A pulsed dye laser pumped by Nd-YAG laser was used in this spectrometer. The forbidden $b^1 \Sigma_{g^+} - X^3 \Sigma_{g^-}(1, 0)$ transition of O₂ was measured to estimate the sensitivity of the system. This transition has the absorption cross section of 3.4×10^{-24} cm², which is one billionth of that of a typical allowed transition. S/N of 300 for this transition was achieved in the CRD spectrum. A synchronization of the pulse discharge with the laser pulse was examined by observation of Ar discharge. Absorption lines of discharge products, i.e. highly – excited neutral and cationic Ar atoms, were detected. A rotational temperature in the hollow cathode discharge was studied by spectroscopic analysis of the C₂ swan band.

【序】1922年に、恒星と地球との間にある希薄な分子雲中の分子による Diffuse Interstellar Bands(DIBs)と呼ばれる吸収線が報告された[1]。現在までに可視から近赤外の領域にわたり、 数百本検出されている。DIBs の起源については、直線炭素鎖分子や多環芳香族化合物等が候 補として上げられているがまだ同定されていない。その同定のためには、実験室での候補分 子の生成とそのスペクトルの測定による DIBs との比較が求められている。当研究室では、放 電発光分光法による DIBs の同定を試みている。しかし、この方法は、可視光領域全域にわた りスペクトル測定が行える一方で、分解能が低い。また、一般的な吸収分光法は、感度が低 く、不安定化学種を測定することは困難である。それに対して、Cavity Ring Down(CRD)分光 法は、分解能が高く、感度も高い。そこで、我々はホロカソード放電と組み合わせた CRD 分 光装置を開発し、その動作試験を行った。

【装置図】CRD分光法は、キャビティ 一内部で光の多重反射に伴う減衰時間 の測定から、吸収スペクトルを得る方 法である。光学キャビティーは向かい 合った2枚の高反射率ミラーで構成さ れる。今回開発したCRD分光装置はレ ーザー、キャビティーと放電装置の3つ からなる(図1)。レーザーにはNd:YAG レーザー励起の色素レーザーを用い た。キャビティーには、R>99.995%の 高反射率ミラーを用いた。キャビティ ーを透過した光は光電子増倍管で検出 された。光の減衰曲線はオシロスコー プを経て、PCに送られた。また、減衰

図1 Cavity Ring Down 実験装置概略図

時間の計算及び、スペクトルの所得には、LabVIEWアプリケーションを用いた。放電装置には、1500 Vの電源を用い、パルスジェネレータで放電のタイミングと放電時間を調整した。 レーザー発振の190 µ s前から1 ms間の放電を行った。

本研究では、 $O_2 O b^! \Sigma_g^+ - X^3 \Sigma_g^- (1, 0)$ 遷移による感度の検証、ArとAr⁺による放電とレーザーの同期の確認、また、 $C_2 Z D \mathcal{V} \mathcal{V} \mathcal{V}$ ドによる放電内の回転温度の観察を行った。

【結果・考察】O₂の吸収スペクトルを図 2 に示す。これは $b^{1}\Sigma_{g}^{+}-X^{3}\Sigma_{g}^{-}(1,0)$ 遷移であり、二 重禁制遷移である。^PQ branch の *K*=8 での吸収断面積は 3.4×10^{-24} cm² である [2]。これは一 般的な電子双極子遷移の吸収断面積と比べて9 桁小さい。今回の測定ではこの回転線が S/N = 300 で得られた。これは、目的の化学種が導入サンプルに対して ppm 程度生成されれば測定 可能であることを示す。

次に、Ar 放電の吸収スペクトルを図3に示す。Ar の中性励起状態とイオンがともに観測されている。このことから放電とレーザーの同期を確認できた。

さらに、放電して得られた C₂のスワンバンドの吸収スペクトルを図4に示す。この電子遷移は、これまで放電発光分光法によって観測されているが、回転構造を分解できていなかった。今回の CRDS による測定では、回転構造を確認することができた。当日は回転温度についても議論する。

