$\mathsf{NO}_3\ \tilde{X}^2\mathsf{A}_2$ ' 状態の振動構造 Vibrational structure of the $\tilde{X}^2\mathsf{A}_2$ ' state of NO_3

福島勝 広島市立大学、情報科学研究科

Masaru Fukushima Faculty of Information Sciences, Hiroshima City University

We have generated NO₃ in supersonic free jet expansions and observed laser induced fluorescence (LIF) of the $\tilde{B}^{2}E' - \tilde{X}^{2}A_{2}'$ electronic transition. We have measured dispersed fluorescence (DF) spectra from the single vibronic levels (SVL's) of the \tilde{B}^{2} E' state of $^{14}NO_3$ and $^{15}NO_3$, and found a new vibronic band around the ν_1 fundamental [1]. This new band has two characteristics; (1) inverse isotope shift, and (2) unexpectedly strong intensity, i.e. comparable with that of the v_1 fundamental. We concluded on the basis of the isotope effect that the terminated (lower) vibrational level of the new vibronic band should have vibrationally a_1 ' symmetry, and assigned to the third over-tone of the v_4 asymmetric (e') mode, $3 v_4$ (a_1 '). We also assigned a weaker band at about 120 cm⁻¹ above the new band to one terminated to $3 v_4$ (a_2 '). The $3 v_4$ (a_1 ') and (a_2 ') levels are ones with $l = \pm 3$. proposed new vibronic coupling mechanism which suggests that degenerate vibrational modes can induce electronic orbital angular momentum even in non-degenerate electronic We interpret this as a sort of break-down of the Born-Oppenheimer approximation, and think that $\pm l$ induces $\mp \bar{\Lambda}$, where $\bar{\Lambda}$ is quantum number for the pseudo-electronic orbital angular momentum; for the present system, one of the components of the third over-tone level, $|\Lambda = 0$; $v_4 = 3$, l = +3, can have contributions of $|\overline{\Lambda} = -1; v_4 = 3, l = +2\rangle$ and $|-2; 3, +1\rangle$. Under this interpretation, it is expected that there is sixth-order vibronic coupling, $(q_+^3 Q_-^3 + q_-^3 Q_+^3)$, between $|0;3,+3\rangle$ and $|0;3,-3\rangle$, because $|0;3,-3\rangle$ has contributions of $|+1;3,-2\rangle$ and $|+2; 3, -1\rangle$. The third-order coupling is weaker than the Renner-Teller term (the fourth-order term, $(q_+^2 Q_-^2 + q_-^2 Q_+^2)$), but stronger than the eighth-order term, $(q_+^4 Q_-^4 + q_-^4 Q_+^4)$. It is well known in linear molecules that the former shows huge separation, comparable with vibrational frequency, among the vibronic levels of Π electronic states, and the latter shows considerable splitting, ~ 10 cm⁻¹, at Δ electronic states. Consequently, the ~100 cm⁻¹ splitting at $v_4 = 3$ is attributed to the sixth-order interaction. The relatively strong intensity for the band to $3 v_4$ (a_1) can be interpreted as a part of the huge 0-0 band intensity, because the 3 v_4 (a_1 ') level, $|0; 3, \pm 3\rangle$, can connect with the vibrationless level, $| 0; 0, 0 \rangle$. $| 3 v_4 (a_1)|$ has two-fold intensity because of the vibrational wavefunction, $|0;3,+3\rangle + |0;3,-3\rangle$, while negligible intensity is expected for $3v_4$ (a_2') with $|0;3,+3\rangle - |0;3,-3\rangle$ due to the cancellation. To confirm this interpretation, experiments on rotationally resolved spectra are underway.

我々は $NO_3 \tilde{B}^2 E' - \tilde{X}^2 A_2'$ 遷移の単一振電準位からの分散ケイ光スペクトルの解析 を通して、基底 X^2A_2 電子状態の振動構造の解明を進めている。我々は、一昨年、全対 称 v₁ 振動準位領域のスペクトルを注意深く測定したところ、従来、単一と認識されていた v. 基音振動領域に2つの振電バンドが存在することを明らかにした [1]。これら2つのバン ドは次の2つの特徴をもつ。(1) ¹⁴NO。と ¹⁵NO。とで逆の同位体シフトを示し、v₁ に帰属さ れるバンドは通常とは逆のシフト(v₁(¹⁴NO₃) < v₁(¹⁵NO₃)) を示す。(2) 他方の新たに観測 されたバンドは v1 基音バンドと比較しうる強い遷移強度をもつ。これらの結果から、我々 はこの新たな振電バンドは全対称(a₁')振動準位への遷移であり、3 v₄(a₁')準位への 遷移に帰属されると結論した。これに加えて、我々はこの v₁ 領域から約 120 cm⁻¹ 高エ ネルギー領域にある弱い振電バンドを 3 v_4 (a_2 ') への遷移と帰属した。これら 3 v_4 (a_1 ') と $3 v_4(a_2)$ 準位は $l=\pm 3$ の成分をもつ。廣田は非縮退電子状態であっても、縮重振動 の励起により、電子軌道角運動量が生ずる、という説を提案した [2]。我々はこれを Born-Oppenheimer 近似の破れと解釈し、振動角運動量 ± l は、電子軌道角運動量 $\mp \bar{\Lambda}$ を生成可能、と考えた。ここで、∧ は縮重振動により生じる擬似的な電子軌道角運動量で あり、今回のシステムでは v_4 の3倍音の1つの成分 $| \Lambda = 0 ; v_4 = 3, l = +3 \rangle$ は、 $|\bar{\Lambda} = -1; v_4 = 3, l = +2\rangle$ と $|-2; 3, +1\rangle$ の寄与をもつことになる。この理解によると、 √4 の3倍音の他方の成分 | 0; 3, -3) は | +1; 3, -2) と | +2; 3, -1) の寄与をも つので、 $|0;3,+3\rangle$ と $|0;3,-3\rangle$ の間には6次の振電相互作用 $(q_+^3Q_-^3+$ $q_{-}^{3}O_{+}^{3}$) が可能となる。6次の相互作用は Renner-Teller 相互作用 (4次相互作用 $(q_{+}^{2}Q_{-}^{2}+q_{-}^{2}Q_{+}^{2})$) より弱いが、8次の相互作用 $(q_{+}^{4}Q_{-}^{4}+q_{-}^{4}Q_{+}^{4})$) よりは 強い。前者は Ⅱ 電子状態の直線分子に関して、振動準位に匹敵する大きな分裂を生じ、 後者は Δ 電子状態に対して、~ 10 cm⁻¹ 程度の分裂を生じることが知られている。したが って、今回の ~ 100 cm-1 程度の分裂は、6次の振電相互作用と解釈可能である。3 v4 (a_1') へのバンドの強い強度は、 $3v_4(a_1')$ 準位がO振動準位と k_{444} の非調和項を通して 結合可能なので、0-0 バンドの強度の一部と考えられる。3 v4(a1')と 3 v4(a2') 準位の 主な成分は、それぞれ | 0; 3,+3 >+ | 0; 3,-3 > と | 0; 3,+3 > - | 0; 3,-3 > で表さ れ、前者は強度が倍になるものの、後者は打ち消されることになり、実験結果と矛盾しない。 上記の解釈を確認するために、現在、回転構造を分離したスペクトルの測定を試みてい る。

^[1] 福島、石渡、第 13 回分子分光研究会 L17 (2013)、第 7 回分子科学討論会 2A20 (2013)、および、68th International Symposium on Molecular Spectroscopy, paper WJ03.

^[2] E. Hirota, J. Mol. Spectrosco. 310, 99 (2015).