
Figure 1. Phase space diagram for
Simple Harmonic Oscillator

Figure 2.
Bottom: Elliptical gravitational
orbits around the black point -
all with the same energy and
angular momentum but
different starting points.
Top: Corresponding phase
space trajectories and the
resulting torus.
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In spectroscopy we choose a set of quantum numbers for assigning a spectrum. However, there

are cases when a set of quantum numbers cannot be used globally. This happens when excitation

of a molecule results in a qualitative change of the energy level pattern. Recent examples are

“quasilinear” molecules - i.e. molecules exhibiting Quantum Monodromy. In such molecules

bent-molecule vibration-rotation quantum numbers are most appropriate for lower rovibrational

levels while linear-molecule quantum numbers can be more appropriate for higher levels.

The question we are examining is to what extent fundamental

notions from geometric mechanics and topology allow us to

localize the energies and angular momenta where such re-

arrangement occurs. This talk begins with a reminder that phase

space is simply configuration space supplemented by the

momentum coordinates. Fig. 1 shows the 1 dimensional (1D)

configuration space example of a Simple Harmonic Oscillator.

Supplementing this with the single momentum coordinate results

in a 2D phase space. Fig. 1 also shows a phase space trajectory for

a SHO with a specific energy.

If motion occurs in 2D then supplementing the two configuration space

dimensions by the two momentum dimensions results in a 4D phase

space. This is difficult to illustrate! However, in the problems of

interest angular momentum is conserved. Choosing angular momentum

as one of the two momenta of the system leaves us with a set of 3D

problems, one for each value of the angular momentum. These are

much easier to illustrate and understand than 4D ones! The set of phase

space trajectories for a given energy and angular momentum typically

form a torus (doughnut). Fig. 2 shows an example for gravitational

orbital motion. Elliptical orbits for the same energy and angular

momentum but with different starting points are shown, along with

their phase space trajectories. It can be seen that the full set of these

phase space trajectories combine to cover a torus, which is also shown.

More interesting is the case of the double-minimum EF electronic state of molecular Hydrogen.

For vibrationally bound energies for J = 10 three different regimes can be seen in Fig. 3. For the

energy shown in panel (a) only the outer-well is classically accessible. In (b) both wells are

separately accessible, while in (c) the wells are jointly accessible. The resulting phase-space tori 

are also shown in each panel. For energies similar to that shown in (a) there is a single torus,



Figure 3. Effective potential energy function for J = 10 for the EF state of H2, along with classically
allowed ranges. Phase space surfaces (topologically these are tori) are shown for each
selected energy. Vertical lines connect classical turning points with edges of tori.

corresponding to vibration in the outer well along with rotation of the molecule. For (b) there is

a torus for each well, while in (c) these two tori have joined, forming a single “dented” torus.

The boundaries between regions

of different behaviour are curves

in Energy-Momentum space.

These curves are called Critical

Curves  an d  t o p o l o g ica l

considerations allow us to find the

Critical Curves with remarkable

ease. The critical curves for the

EF state of Hydrogen are shown

as funct ions of angular

momentum in Fig. 4. 

Also shown in Fig. 4 are the

quantum energy levels of this state

(for clearer representation the

diagram is mirrored around J=0).

The rearrangement of the energy

level grid whenever one of the

Critical Curves is crossed is

clearly evident in Fig. 4. Such dramatic rearrangement of the quantum levels generally requires

the use of different quantum numbers in each region. If one is using an effective model to

describe the quantum levels then different models will have to be used in each region.

This type of dramatic rearrangement occurs in other molecular systems, including the already

mentioned example of vibration-rotation in Quantum Monodromy and torsion-vibration in skew-

chain molecules. Time permitting, these examples will also be presented.

Reference: Topological Insight into the Patterns of Quantum Energy Levels of the EF State of

Molecular Hydrogen, Francis Bischoff, UNB Physics Honour’s B.Sc. Thesis, 2013.

Figure 4
EF State quantum levels of H2 shown with the Critical Curves. Dots
indicate J = 10 levels of Fig. 3. (Levels calculated by MQDT and
agree to within ~5 cm!1 of experiment, where the latter is known.)


