## **分子錯体** N<sub>2</sub>-ES と N<sub>2</sub>-DMS の FTMW 分光 (神奈川エ大<sup>\*</sup>, 総研大<sup>b</sup>) 〇岩野栄<sup>\*</sup>・川嶋良章<sup>\*</sup>・廣田榮治<sup>b</sup>

FTMW spectroscopy on the N<sub>2</sub>-ES and N<sub>2</sub>-DMS complexes (Kanagawa Inst. Tech.<sup>a</sup>, Grad. Univ. Advanced Studies<sup>b</sup>) <u>Sakae Iwano<sup>a</sup></u>,Yoshiyuki Kawashima<sup>a</sup>,Eizi Hirota<sup>b</sup>

The ground-state rotational spectra of the nitrogen molecule-ethylene sulfide (N<sub>2</sub>-ES) and nitrogen molecule-dimethyl sulfide (N<sub>2</sub>-DMS) complexes were investigated by Fourier transform microwave spectroscopy. The rotational spectra were observed for the normal, <sup>15</sup>N<sub>2</sub>, and <sup>15</sup>NN species of both the complexes; the *b*-type transitions of the N<sub>2</sub>-ES and the *c*-type transitions of the N<sub>2</sub>-DMS were assigned. We concluded that the N<sub>2</sub> moiety was located in the plane perpendicular to the C-S-C plane and bisecting the CSC angle of the ES or DMS. The distances  $R_{cm}$  between the centers of mass of the constituents were determined to be 3.817 and 3.803 Å for N<sub>2</sub>-ES and N<sub>2</sub>-DMS, respectively. The potential barrier V<sub>3</sub> obtained for the ortho and para states of the <sup>15</sup>N<sub>2</sub>-DMS was 741 (10) cm<sup>-1</sup>.

【序】近接距離における分子間力の詳細を明らかにするため、対称性の高い分子:エチレン オキシド(EO)、エチレンスルヒド(ES)、ジメチルエーテル(DME)、ジメチルスルヒド(DMS) を選び、これらと希ガス、CO、N<sub>2</sub>、CO<sub>2</sub>との2分子錯体をフーリエ変換マイクロ波(FTMW) 分光法により系統的に研究してきた。<sup>1)</sup> N<sub>2</sub>分子を含む錯体では、これまでに N<sub>2</sub>-EO<sup>2)</sup>と N<sub>2</sub>-DME についての結果を報告した。今回、N<sub>2</sub>-ES および N<sub>2</sub>-DMS 錯体を取り上げ、回転スペ クトルを測定・帰属したので報告する。

【実験】市販の ES あるいは DMS 0.5%を 1.5%の N<sub>2</sub> と混合し、アルゴンで希釈した。背圧を 3~5 気圧として、5~25GHz の周波数領域を 0.25MHz 毎に 20 回積算して、掃引した。精密測 定は積算回数 100~1000 で行った。 $^{15}N_2$ 種および  $^{15}NN$  種は  $^{15}N$  と  $^{14}N$  の比が 50%のチッ素分 子の試料を用いてスペクトル測定を行った。

【計算】 $N_2$ -ES と  $N_2$ -DMS 錯体の分子定数を、Gaussian09 を用い MP2/6-311++G(d,p)レベルで 計算した。最適化構造では、図 1(a)と(b)に示したように、 $N_2$ -ES と  $N_2$ -DMS 錯体ともに、 $N_2$ 分子は ES や DMS の重原子平面 CSC に対して垂直に配位している。 $N_2$ 分子を含む対称面は  $N_2$ -ES では *a-b* 面、 $N_2$ -DMS では *a-c* 面である。



Fig.1 (a) and (b) Molecular structures of the N<sub>2</sub>-ES and N<sub>2</sub>-DMS, respectively.

【結果と考察】<u>1. N<sub>2</sub>-ES のスペクトル</u> 観測された吸収線から、ES の単量体とその同位 体種および Ar-ES 錯体のスペクトルを取り除き、N<sub>2</sub>-ES のスペクトルとした。 $1_{11} \leftarrow 0_{00}$  遷移の 超微細構造(hfs)に注目し、量子化学計算から予想される周波数の近傍:9050MHz に 4 本、 9048MHz に 3 本の吸収線を見出し、前者をオルト N<sub>2</sub>-ES 錯体、後者をパラ N<sub>2</sub>-ES に帰属し た。さらにその他の b 型遷移を検出したが、hfs が複雑なので、<sup>15</sup>N<sub>2</sub>-ES 錯体を先に取り上げ ることとした。<sup>15</sup>N<sub>2</sub>-ES 錯体でも同様に、8952MHz および 8954MHz に  $1_{11} \leftarrow 0_{00}$  遷移を測定し、 強度の強い前者をオルトに、後者をパラに帰属した。最終的に b 型遷移を、オルトでは 35 本、 パラでは 47 本帰属した。測定された遷移周波数を非対称コマ分子のハミルトニアン (A-reduction)で解析した。<sup>15</sup>NN と ES 混合気体で測定された  $1_{11} \leftarrow 0_{00}$  遷移を図 2(a)に示す。 中央に測定された 2 本のスペクトル線は<sup>15</sup>NN-ES の inner 型と outer 型である。明らかに <sup>15</sup>NN-ES(inner)の方が(outer)より強度が強い。<sup>15</sup>NN-ES (inner) と(outer)でそれぞれ b 型遷移を 26 本、22 本測定帰属し、解析を行った。いずれの錯体においても a 型遷移は測定できなかっ た。N<sub>2</sub>-EO 錯体ではオルトとパラの他に強度の異なる 2 種類のスペクトルが測定されている が、N<sub>2</sub>-ES 錯体ではこのようなスペクトルは測定できなかった。得られた回転定数から分子 間距離を  $R_{cm} = 3.817$ Å と決定した。

2. N<sub>2</sub>-DMS のスペクトル 観測された吸収線から、DMS とその同位体種および Ar-DMS 錯体のスペクトルを取り除き、N<sub>2</sub>-DMS のスペクトルとした。N<sub>2</sub>-ES 錯体の場合と同様、 $1_{10} \leftarrow 0_{00}$ 遷移の hfs に注目して掃引したところ、7046 MHz に 4 本、7005 MHz に 3 本の hfs 吸収線を見 出し、前者をオルト N<sub>2</sub>-DMS 錯体と後者をパラ N<sub>2</sub>-DMS と帰属した。<sup>15</sup>N<sub>2</sub>-DMS 錯体でも同様 に  $1_{10} \leftarrow 0_{00}$  遷移を測定し、オルトでは c 型遷移 33 本を、パラでは 28 本帰属した。測定された 遷移周波数を非対称コマ分子のハミルトニアン (*A*-reduction) で解析した。<sup>15</sup>NN と DMS の混 合気体で測定された  $1_{10} \leftarrow 0_{00}$  遷移のスペクトルを図 2(b)に示す。中央に測定された 2 本のスペ クトル線は <sup>15</sup>NN-DMS inner と outer によるものである。<sup>15</sup>NN-DMS (inner) と(outer)でそれぞ れ c 型遷移を 23 本、22 本測定帰属し、解析を行った。いずれの同位体においても a 型遷移は 測定されなかった。得られた回転定数から分子間距離  $R_{cm} = 3.803$ Å をえた。



Fig.2 (a) and (b) Observed spectra of the  $J = 1 \leftarrow 0$  transitions for the N<sub>2</sub>-ES and the N<sub>2</sub>-DMS, respectively.

<sup>15</sup>N<sub>2</sub>-DMS の  $K_a$ =2 および 3 の遷移は、DMS の 2 個のメチル基内部回転によって分裂して観 測された。この分裂から  $V_3$ をオルトとパラで 741 (10) cm<sup>-1</sup>と求めた。メチル基内部回転障壁  $V_3$ は、DMS 単体の 752.57(84) cm<sup>-1</sup>、類似錯体 Ar-DMS の 736.17(32) cm<sup>-1</sup>、CO-DMS の 745.5(30) cm<sup>-1</sup>と比べてよく似た値であった。

NBO 解析の結果、類似錯体を含めて電荷移動による安定化エネルギーCT(= $\Delta E_{\sigma\sigma^*}$ )と結合エネルギー $E_B$ の間には良い相関のあることが分かった。

【文献】<sup>1)</sup> Y. Kawashima, A. Sato, Y. Orita, and E. Hirota, *J. Phys. Chem. A* **116**, 1224 (2012). <sup>2)</sup> Y. Kawashima and E. Hirota, *J. Phys. Chem. A* **117**, 13855 (2013).