NO₃ ラジカルの振動波数と強度のパッケージによる計算 (岡山大学理学部化学) 〇唐健・川口建太郎

Calculation of the vibrational frequencies and intensities for the NO₃ radical with program packages (Okayama Univ) Jian Tang and Kentarou Kawaguchi

The infrared frequency and intensity of the v_3 degenerate N-O stretching fundamental vibration in the ground electronic X^2A_2 state of the NO₃ radical are a debated issue. The initial assignment of the v_3 fundamental was for the observed strongest infrared band at 1492 cm⁻¹ with some anomalies on the isotopic shift and the Coriolis coupling constant.¹ Calculations with the model Hamiltonian approach by Stanton² predicted a very weak v_3 fundamental near 1069 cm⁻¹ and reassigned the 1492 cm⁻¹ band as the $v_3 + v_4$ combination for NO₃. The latter point has been supported by the analysis of the matrix spectroscopic observation³ around 1492 cm⁻¹ for various isotopic species of NO₃ and the analysis of the FTIR spectroscopic observation⁴ around 1127 cm⁻¹ for the hot $v_3 + v_4 - v_4$ band. The LIF observation⁵ of the $B^2E'-X^2A_2'$ transition revealed a 1056 cm⁻¹ band for ${}^{14}NO_3$ and a 1039 cm⁻¹ band for ${}^{15}NO_3$, which may be attributed to the expected v_3 fundamental in the ground electronic X^2A_2 state, ⁶ but was also argued for other possible assignments.⁷ A recent calculation⁸ using the code MULTIMODE showed a similar result as Stanton's calculation. In the present study, we show that the low frequency and weak IR intensity for the v_3 fundamental of NO₃ can be reproduced simply with two program packages, Gaussian09 and Molpro 2012.

We first tested the closed shell species with the D_{3h} structure: BF_3 , SO_3 , and NO_3^- to compare with the calculation for NO_3 , as shown in Table I. The low level MP3 (third-order Moller-Plesset perturbation theory) method with a small pvdz basis set gave reasonable harmonic vibrational frequencies of all the modes for BF_3 , SO_3 , NO_3^- , and even for the open shell CH_3 radical when compared with the observed ones, but the MP3 result for NO_3 was too high for v_3 and v_4 even with larger basis sets. When the DFT calculation with a B3LYP/pvdz level was applied, v_3 and v_4 dropped to less than half for NO_3 , but there were little changes on other closed shell species. In the B3LYP calculations

	BF3				NO3 ⁻				NO ₃			
	MP3	B3LYP	CCSD	Exp.	MP3	B3LYP	CCSD	Exp.	MP3	B3LYP	CCSD	Exp.
ν_1	885	866	874	888	1151	1074	1105	1062	1228	1140	1169	1060
	(0)	(0)	(0)		(0)	(0)	(0)		(0)	(0)	(0)	
ν_2	725	689	717	691	897	849	884	763	834	801	822	762
	(115)	(89)	(109)		(32)	(26)	(32)		(19)	(16)	(17)	
ν_3	1493	1457	1478	1454	1575	1461	1508	1350	2446	1147	1282	
	(433)	(381)	(417)		(608)	(456)	(538)		(3449)	(0.03)	(11)	
ν_4	490	473	486	479	746	714	731		754	239	394	365
	(14)	(11)	(14)		(0.6)	(1)	(0.7)		(16)	(15)	(4)	

Table I. Comparison of the calculated vibrational wavenumbers (in cm⁻¹) with the experimental ones (numbers in the brackets are infrared intensities in km/mole)

with various basis sets up to avqz, the vibrational frequency of the v_3 fundamental was given around 1100 cm⁻¹, and the infrared intensity of the v_3 fundamental was given as less than 1/20 for the v_2 or v_4 fundamentals. With the coupled cluster methods at the CCSD, QCISD, and CCSD(T) levels, there were no significant changes on the vibrational frequencies of all the modes for all the species, but the QCISD method gave slightly stronger and the CCSD method gave 50 times stronger infrared intensity for the v_3 fundamental (the CCSD(T) method could not calculate the infrared intensity). In conclusion, the calculations with the DFT B3LYP method and the coupled cluster methods gave the similar harmonic vibrational frequencies for the fundamentals as the previous model calculations^{1.8} including the weak v_3 fundamental of NO₃ near 1100 cm⁻¹.

We also calculated the Raman intensities for these species with the B3LYP method. The interesting results of the calculation showed that (Fig. 1), although the infrared intensity for the v_3 fundamental of NO₃ is much weaker than the strongest v_3 fundamental for the other closed shell D_{3h} species, the Raman intensity for the v_3 fundamental of NO₃ is over 100 times stronger than the one for the others. Therefore, observing the Raman spectrum (or four-wave mixing spectrum with the similar selection rules) of NO₃ may be the best way to identify the v_3 fundamental of NO₃.

scattering activities for NO3⁻ and NO3

References

- T. Ishiwata, I Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys. 82, 2196 (1985);
 K. Kawaguchi, E. Hirota, T. Ishiwata, and I. Tanaka, J. Chem. Phys. 93, 951 (1990).
- J. F. Stanton, J. Chem. Phys. 126, 134309 (2007); Mol. Phys. 107, 1059 (2009); J. Phys. Chem. Lett. 3, 1946 (2012).
- M. E. Jacox and W. E. Thompson, J. Chem. Phys. 129, 204306 (2008); J. Phys. Chem. A114, 4712 (2010).
- 4. K. Kawaguchi, R. Fujimori, J. Tang, and T. Ishiwata, J. Phys. Chem. A117, 13732 (2013).
- 5. M. Fukushima and T. Ishiwata, 68th Intenational Symposium on Molecular Spectroscopy, Paper WJ03, Columbus, Ohio, 2013.
- 6. K. Kawaguchi, R. Fujimori, J. Tang, and T. Ishiwata, J. Mol. Spectr. 314, 73 (2015).
- 7. E. Hirota, J. Mol. Spectr. **310**, 99 (2015).
- 8. Z. Homayoon and J. M. Bowman, J. Chem. Phys. 141, 161104 (2014).