分子錯体 CO₂-DMS の FTMW 分光 (神奈川エ大^{*}, 総研大^b) 〇川嶋良章^{*}・岩野栄^{*}・廣田榮治^b

FTMW spectroscopy of the CO₂-DMS complex (Kanagawa Inst. Tech.^a, Grad. Univ. Advanced Studies^b) <u>Yoshiyuki Kawashima^a</u>,Sakae Iwano^a, Eizi Hirota^b

The ground-state rotational spectra of the $C^{18}O_2$ -DMS and $C^{18}OO$ -DMS complexes were observed by Fourier transform microwave spectroscopy. Two sets of the spectra observed for the $C^{18}O_2$ -DMS were quite similar in pattern to those of the normal species, whereas the $C^{18}OO$ -DMS species showed spectra much different in structure from those of the normal and $C^{18}O_2$ -DMS species.

【序】二酸化炭素・ディメチルスルフィド CO₂-DMS 錯体は Fig.1 に示し た安定構造をもつ。2 個の内部回転角 θ と τ の関数として計算したポテ ンシャルエネルギー面 PES を Fig.2 に示す。CO₂が、DMS の CSC 垂直 二等分面内付近にあるときが最安定であるが、小さな障壁(高さ 1.25 cm⁻¹)を中央にもつ 2 極小ポテンシャルになっている。ノーマル種のス ペクトには2組 (Set 1, Set 2)検出されており、Set 1 では a型遷移43本、 c型遷移 67本および b 型禁制遷移 (DMS の 2 個のメチル基内部回転分

裂と K型二重項が同程度の場合に観測される) 14本を帰属した。 Set 2 では a 型遷移 21本、c 型遷移 11本($K_a = 1, 0$)を観測、帰属した。測定周波数を非対称コマ回転ハミルトニアンで最小2 乗解析した結果を Table 1 に示す。えられた遠心力歪定数から分 かるように収斂は不完全であり、標準偏差も大きい。回転定数 Aは set 1 と set 2 で大きく異なっており、遠心力歪定数は符号が逆 になっている。このように異常な分子定数は、内部回転・回転 間のコリオリ相互作用と回転定数の内部回転角 τ 依存性によっ て説明した。¹⁻³今回錯体の分子構造、内部運動について、さら

て説明した。¹⁻³⁾今回錯体の分子構造、内部運動について、さら Fig.2 PES of the CO₂-DMS に詳細な知見をえるため、¹⁸O 同位体種を取り上げ、回転スペクトルを測定・帰属したので報告 する。

【実験】酸素同位体:¹⁸O₂100%と¹⁶O₂,¹⁸O₂の等量混合中で炭をそれぞれ燃やし C¹⁸O₂と C¹⁸O₂, C¹⁸OO 混合体を合成した。市販の DMS と合成した同位体 CO₂をアルゴンでそれぞれ 0.5%と 1.5% に希釈、混合し分光測定に使用した。背圧を 3~5 気圧とし 5~25GHz の周波数領域を 0.25MHz 毎に 20 回積算、掃引した。精密測定には信号を 100~1000 回積算した。

【計算】CO₂-DMS 錯体の分子定数を、Gaussian09 を用い MP2/6-311++G(d,p)レベルで計算した。 【結果】混合同位体試料は C¹⁸OO を 50%、CO₂ と C¹⁸O₂ を 25% ずつ含む。領域 5~25 GHz で測 定した吸収線から DMS 単量体(ノーマル種および同位体種)、Ar-DMS、CO₂-DMS のスペクト ルを除き C¹⁸OO-DMS、C¹⁸O₂-DMS のスペクトルを明確に同定した。ノーマル種と同様、a 型 R枝遷移を $J = 3 \leftarrow 2$ から 8 \leftarrow 7 まで測定した。C¹⁸OO-DMS と C¹⁸O₂-DMS 錯体に予想される周波数 近辺に、それぞれ 5 種類と 2 種類のシリーズを見出したが、それらの帰属は簡単ではなかった。

次に C¹⁸O₂ 100%の試料を用いて、C¹⁸O₂-DMS に対し set 1: K_a = 0、±1、±2の a型 R 枝遷移 68 本を観測、帰属し、和の法則を用いて c型 R 枝遷移 23 本、Q 枝遷移 12 本を帰属した。次いで set 2 に対し $K_a = 0, 1$ と思われる a 型 R 枝遷移を見出した。これらの結果に加え、 $C^{18}OO$ -DMS に ついて5個のa型R枝遷移を検出しc型遷移と組み合わせて、3組の回転スペクトルを帰属した; $K_a = (0, 1)$ の組、 $K_a = (-1, -2)$ の組、和の法則による確認はできていないが、 $K_a = 0$ と思われる組 である。 $C^{18}O_7$ -DMSの set 1 と $C^{18}OO$ -DMSの c型遷移が帰属された 2 組の遷移周波数を、非対 称コマの回転ハミルトニアン(S-reduction)により最小二乗法解析した。結果をTable1に示す。

【考察】Fig.2 に示したように、CO₂内部回転に対するポテンシャル障壁 $V_{max}(\tau)$ は約 140 cm⁻¹、 DMS に対する $V_{\max}(\theta)$ は 220 cm⁻¹ である。¹⁶O, ¹⁸O の核スピンがゼロであるので、ノーマル種と $C^{18}O_2$ -DMS のもっとも低い τ 内部回転状態は $|s1(\tau)> \geq |a2(\tau)>$ である。そのエネルギー差は約8 cm⁻¹ である。なお DMS の θ 内部回転の影響はほとんど観測されないが、メチル基内部回転は回転遷 移を 0.1 MHz 程度分裂させる。したがって C¹⁸O₂-DMS の set 1, set 2 は、ノーマル種の場合と同 様、 $|s1(\tau)> \geq |a2(\tau)> に帰属され、観測された異常な分子定数はコリオリ相互作用と回転定数の <math>\tau$ 依存性に帰着される。

τ内部回転の波動関数は次のようであり、

 $\begin{aligned} |s1(\tau)\rangle &= \sum_k C_k^{(1)} \cos(2k\tau) \\ |a1(\tau)\rangle &= \sum_k S_k^{(1)} \sin(2k\tau+1) \end{aligned}$

$$|s2(\tau)\rangle = \sum_{k} C_{k}^{(2)} \cos(2k\tau + 1)$$

 $|a2(\tau)\rangle = \sum_{k} S_{k}^{(2)} \sin(2k\tau)$

ノーマル種と $C^{18}O_2$ -DMS では、酸素の核スピン統計から、 $|a1(\tau)>, |s2(\tau)>$ は存在しないが、これ に対して C¹⁸OO-DMS の場合は CO₂の2個の酸素が不等価であるので、上記4種類の内部回転状 態が存在する。最低2状態: |s1(t)>, |a1(t)> はほぼ完全に縮退しており、これらの間にはコリオ リ相互作用はないが、回転定数のτ依存性は極めて大きな影響を与えることが予想される。τ=0 から $\tau = \pi \sim O CO_2$ 内部回転には $\tau > 0, \tau < 0$ の等価な2個のパスがあり、これらの同位相、逆位 相の組み合わせがそれぞれ $|s1(\tau)> |a1(\tau)> |a1(\tau)$ のグループと組み合わされる。目下統一的、定量的解析を目指して研究を進めている。

Table 1 Molecular constants of CO₂-DMS, C¹⁸O₂-DMS, and C¹⁸OO-DMS

A / MHz	CO ₂ -DMS(set1) 4264.3 (12)	CO ₂ -DMS(set2) 3201.74 (90)	C ¹⁸ O ₂ -DMS(set1) 4091.31 (55)	$C^{18}OO-DMS(K_a = 0, 1) C^{18}OO-DMS(K_a = -1, -2)$	
				3927.508 (23)	3906.42 (22)
<i>B /</i> MHz	1382.47 (10)	1408.89 (12)	1308.736 (44)	1341.61 (38)	1353.496 (61)
C/MHz	1347.057 (95)	1338.749 (86)	1293.678 (43)	1303.30 (38)	1293.50 (38)
<i>D</i> _J / MHz	0.04928 (84)	-0.07251 (88)	0.053332 (33)	0.04441 (63)	0.0533 (12)
<i>D_{JK} /</i> MHz	1.707 (17)	-5.116 (84)	1.885 (19)	3.29 (19)	-2.881 (45)
<i>D</i> к/ MHz	16.83 (33)		16.86 (11)		_
d₁/MHz	-0.00632 (51)	_	-0.00578 (28)	-0.01278 (46)	0.0099 (16)
d₂/MHz	0.03566 (14)	0.0400 (30)	_		_
σ/MHz	2.51	1.02	0.83	0.028	0.161
N(a-type) / -	43	21	33	14	13
N(_{o-type)} / -	67	11	35	14	9
N(<i>b</i> -type) / -	14	0	0	0	0

【文献】¹⁾ 森谷貴幸、川嶋良章、廣田榮治 第5回分子科学討論会 札幌 1 A08 (2011) 2) 川嶋良章、廣田榮治、森谷貴幸 第6回分子科学討論会 本郷 1 A11 (2012)³⁾ 廣田榮治、川嶋良章 第6回分子科学討論会 本郷 1A12 (2012)