C0 および C0₂ 凝縮層中に捕捉された H₂ の赤外分光 (学習院大理^a) O石橋篤季^a・山川紘一郎^a・荒川一郎^a

Infrared spectroscopy of H₂ trapped in condensed films of CO and CO₂ (Gakushuin Univ.^a) <u>Atsuki Ishibashi^a</u>, Koichiro Yamakawa^a, Ichiro Arakawa^a E-mail: atsu7bul.259@gmail.com

Field and co-workers have recently suggested that dipolar molecules such as CO and N_2O , which are vapor-deposited at a low temperature, spontaneously align and exhibit large electric fields (> 10^8 V/m).^{1,2} They employed two kinds of experimental methods: direct measurement of the surface electric potential of a substrate¹ and analysis of phonon-induced splitting in the infrared absorption band due to the internal vibration of condensed dipolar molecules.² We focused on the fact that measurement of the induced dipole moment of a homonuclear diatomic molecule is also useful for the evaluation of the electric field strength. In fact, Dai et al. detected induced infrared absorption of H₂ on an annealed NaCl film and calculated its infrared intensity (IRI), from which the electric field strength in solid CO, as well as that in solid CO₂, CH₄ and Ar, evaluating IRI of contained H₂.

The experimental apparatus consists of a vacuum chamber equipped with a liquid helium cryostat, a Fourier transform infrared spectrometer, and a HgCdTe detector. The base pressure of the vacuum chamber was 1×10^{-8} Pa. Gas mixtures of X (X = CO, CO₂, CH₄, Ar) and H₂ were prepared at the ratio of X / H₂ = 10 and were condensed on a gold substrate at 5 K. Infrared absorption spectra were measured in the reflection geometry with the incident angle of 80 degrees.

In the spectrum of H_2 -containing solid CO at 5 K, we detected a strong and broad infrared absorption band of ¹²CO along with a sharp peak of ^{13}CO . Since the integrated absorbance (IA) of ^{13}CO was much easier to be analyzed than that of ^{12}CO , the column density of ¹²CO was determined from IA, IRI, and the natural abundance (1.1%) of ¹³CO. Using the mixing ratio of CO / H_2 = 10, we also obtained the column density of H_2 . Here, it was

Fig.1 : Infrared spectrum of H_2 in solid CO vapor-deposited at 5 K. (CO / H_2 = 10)

assumed that the trapping coefficient of H₂ is unity. Figure 1 shows the spectrum in the range of the stretching vibration of H₂. The induced infrared absorption band of H₂ extends from 4130 to 4190 cm⁻¹. This indicates that the field in solid CO induces the electric dipole moment in H₂. The minute structure of the absorption band reflects the existence of different binding sites of H₂ in solid CO. IRI of H₂ was determined from IA of this band and column density of H₂ obtained above. Using the relation between the electric field strength, E_{co} , and IRI of H₂, ³ we obtained $E_{co} = 5.5 \times 10^9$ V/m.

In the case of solid CH₄ and Ar, infrared absorption by H₂ was not detected. This result is reasonable because of the following facts: 1) neither electric dipole nor quadrupole moment exists in CH₄; 2) Ar has no electric multipole moment. On the other hand, infrared absorption by H₂ in solid CO₂ was clearly detected. This is shown in Fig. 2. Using IA of ¹³CO₂, the electric field strength was derived in the same way as solid CO: $E_{CO2} = 1.2 \times 10^{10}$ V/m. The result that a solid of CO₂ without the dipole moment has larger electric field than that of CO is rather surprising. However, the trapping coefficient of H₂ as well as the film structure should be properly taken into account. In fact,

the cryotrapping effects of CO, CO_2 , CH_4 and Ar on H_2 were discussed Wallen.⁴ by Additionally, the calculated electric field intensities were found to become smaller when the mixing ratio was set to be X / H_2 $= 1 (X = CO, CO_2)$. In this presentation, we will discuss the electric field strength in solid CO and CO_2 , considering the structures of the condensed layers and their trapping coefficients.

- vapor-deposited at 5 K. (CO₂ / H_2 = 10)
- ¹R. Balog et al., Phys. Rev. Lett. 102 (2009) 073003.
 ²J. Lasne et al., Phys. Chem. Chem. Phys. 17 (2015) 20971.
 ³D. J. Dai and G. E. Ewing, J. Chem. Phys. 98 (1993) 5050.
 ⁴E. Wallen, J. Vac. Sci. Technol. A 14 (1996) 2916.