NO_3 \tilde{B} $^2E' - \tilde{X}$ $^2A'_2$ システムの 2C-R4WM 分光 Vibrational structure of the \tilde{X} 2A_2 ' state of NO_3

福島勝、石渡孝広島市立大学、情報科学研究科

Masaru Fukushima and Takashi Ishiwata Faculty of Information Sciences, Hiroshima City University

We have generated NO₃ in supersonic free jet expansions, and observed the laser induced fluorescence (LIF) and two-color resonant four-wave mixing (2C-R4WM) signals of the $\tilde{B}^{2}E' - \tilde{X}^{2}A'_{2}$ electronic transition. We have measured dispersed fluorescence (DF) spectra from the single vibronic levels. Vibrational structure of the DF spectrum from the vibration-less level is categorized into three parts. Region II: The structure in the region below 1850 cm⁻¹, except the v_1 and v_3 fundamental regions (Region I, see below), ~ 1050 and 1500 cm⁻¹, respectively, is understandable as the v_4 progressions, 4^0_n and $1^0_14^0_n$. Region III: The structure above 1850 cm⁻¹ is too complicated to interpret the structure. Region I: The v₁ and v₃ fundamental regions are now active for discussion, and thus we have tried to measure the rotationally resolved 2C-R4WM spectra. The observation of the 2C-R4WM signals has been restricted those through J' = 0.5 of the $\tilde{B}^{2}E'_{3/2}$ state only, as reported previously [1], the reason of which restriction has been unsolved yet. The 2C-R4WM spectrum of the 1500 cm⁻¹ region shows the K = 0 and N = 1 level of an a_1 ' level remarkably (which may be attributed to the $2v_2$ or $4v_4$ level, or mix of them, but has not been concluded yet), and the 4WM transition energy observed agrees with that derived from IR hot-band analysis [2]. On our higher resolution measurement of the DF spectrum, it has been found that there is an additional level near the v_1 fundamental [3], and accordingly the 2C-R4WM spectrum of the v_1 region also has the corresponding two bands. The K = 0 and N = 1 level of the v_1 fundamental has been identified for the first time. The other, additional band consists of two rotational transitions separated by 0.27 cm⁻¹. Although the 0.27 cm⁻¹ separation is about 10 times larger than the spin splitting, ~ 0.025 cm⁻¹, of the K = 0 and N = 1 levels at the other a_1 ' levels with l = 0, such as vibration-less and v_1 (the latter value of which, 0.025 cm⁻¹, cannot be resolved under our instrumental resolution), the two transitions are thought to correspond to those terminated to two spin sub-levels, J = 0.5 and = 1.5, at the present. On our interpretation on $3v_4$, electronic angular momentum, Λ_i , induced by the vibrational angular momentum, l, generates the large splitting, ~ 160 cm⁻¹, between the a_1 ' and a_2 ' levels of $3v_4$, and this additional a_1 ' level is assigned to $3v_4$ with $l = \pm 3$ [3,4]. For Σ vibronic levels with K = 0, such as $v_d = 1$ and l = 1, of a ${}^2\Pi$ electronic state, it is well known that ${}^2\Sigma^{(+)}$ and ${}^2\Sigma^{(-)}$ vibronic levels have relatively large Ω - or ρ -type doubling due to non-zero Λ , in spite of the Σ vibronic levels [5]. It is thought that the unexpectedly large spin splitting, 0.27 cm⁻¹, between the J = 0.5 and = 1.5levels at $3v_4$ with $l = \pm 3$ is induced by spin-vibration interaction, which has been discussed for degenerate vibronic levels of non-degenerate electronic states, ${}^{2}\Sigma$ and ${}^{3}\Sigma$, of linear polyatomic molecules [6].

我々は NO_3 $B^2E'-X^2A_2'$ 遷移の単一振電準位からの分散ケイ光(DF)スペクトルの解析を通して、基底 X^2A_2' 電子状態の振動構造の解明を進めている [3]。DF スペクトルの振動構造は3つの領域に分類可能である。1850 cm⁻¹ 以下の<u>領域 II</u>の振動構造は、 v_1 および v_3 基音(それぞれ、1050、1500 cm⁻¹)の領域 I (後述)を除いて、比較的

単純で、 v_4 プログレッションとその v_1 との結合音に帰属可能である。1850 cm $^{-1}$ 以上の領 **域**Ⅲは、複雑で、単純な調和振動モードとしての帰属は不可能である。v₁ および v₃ 基音 から成る領域 I は、現在、論争の真っただ中にある。このため、この領域に対して2色共鳴 4光波混合分光 (2C-R4WM) を試みた。赤外分光 (IR) により v₃ 基音領域 (~1500 cm-1)には、e'と a₁'の2つのバンドが観測されている [2]。この領域の DF スペクトル をより高い分解能(1 cm⁻¹ 程度)で測定を行ったところ、これら2つを分離できたが、 1499 cm⁻¹ の a₁' バンドは強く観測されたのに対し、1492 cm⁻¹ の e' はかなり弱かった [3]。2C-R4WM では、この領域に a₁ バンドに対応する回転遷移のみが観測された。 $(NO_3 \tilde{B}^2 E' - \tilde{X}^2 A_2'$ 遷移の超高分解能分光では、J = 0.5 と = 1.5 への回転遷移が 確実に帰属されている [7] が、2C-R4WM では Ω ' = 1/2 の J = 0.5 を中間状態とした場 合のみ信号を与えた [1]。) この測定より、1499 cm⁻¹ の a₁' 準位の N=1 の項値が得ら れ、これは IR のホットバンドの解析結果と一致し、この事実から 2C-R4WM の有効性が 確認された。v₁ 基音 (1051 cm⁻¹) 領域に対しても、比較的分解能の高い DF および 2C-R4WM の測定を試みた。DF スペクトル測定の結果、v₁ 基音の近傍に新たな準位が 観測された [3]。DF スペクトルの v₁ 基音バンドに対して、2C-R4WM の回転遷移も観測 された。この 2C-R4WM 測定は、上記の 1499 cm-1 バンドと同じスキームを採っており、 同様の解析から NO_3 の V_1 基音準位の N=1 準位の項値が初めて求まった。なお、 NO_3 の $\tilde{X}^{-2}A_2$ / 状態の N=1 準位は 0.025 cm⁻¹ 程度のスピン分裂を示すが、今回の装置 分解能では、この分裂は分離されない。v₁基音に近接した新たな準位に対しても 2C-R4WM 測定を試み、信号が観測された。上記2つの a₁' バンドの信号に比較して、こ の信号は明らかな違いがある。最大の特徴は、この信号が 0.27 cm⁻¹ ほど離れた2つの 回転線から成ることである。今回の 2C-R4WM スキームでは、 $\tilde{B}^{-2}E_{1/2}$ 状態の J=0.5を中間状態としてるため、終状態は J = 0.5 (F_2)と = 1.5 (F_1)となる。この 2C-R4WM 信号が2つに分裂して観測された理由として、現時点では、上記2つの a₁ 準位では F₁-F₂ のスピン分裂が分解能以下だったのに対して、この準位では分裂が大きいためと考え ている。2つのバンドの強度比は J=0.5 の方 (inverted のため、高エネルギー側のバン ド)が強く、△∑ の選択則にも合致してる。仮に、この新たな準位が e'の場合、終状態 の回転準位は N=2 となり、今回のスキームでは2つのスピン準位のうち J=1.5 のみ遷 移可能となり、2つのバンドは観測されない。したがって、分裂の解釈が正しい場合、この 振動準位は a_1 と結論される。上記以外の違いに、この準位は、 $\tilde{B}^{-2}E_{1/2}$ 状態 J=0.5への励起エネルギーを分解能幅内でわずかに変化させると、バンド強度が変化する、とい う特徴ももつ。本実験では、励起の際、スピン分裂を分離できず N=1 の J=0.5 と = 1.5 の2つの成分を同時に遷移させているが、現解釈では、終状態における2準位を分離して 観測してることになる。したがって、励起される2つのスピン成分量の違いによる干渉効果 により、2C-R4WM 信号強度の変化が期待される。このように、この 0.27 cm⁻¹ をスピン分 裂とする解釈は、実験結果を、一応、理解可能であるが、そのように結論するには議論を 要する。この新たな準位は v_4 の3倍音 $3v_4$ (a_1) と考えており、 a_1 であるのに $l=\pm 3$ の成分をもつ。この状況は $^2\Pi$ 直線分子(|A|=1)の変角振動準位(|A|=1)の $^2\Sigma^{(+)}$ 、 $^2\Sigma^{(-)}$ 振電準位と類似している (これらは Σ 準位でありながら、 $\Lambda \neq 0$ および $l \neq 0$ で あり、スピン分裂が大きく、 Ω 型 もしくは ρ 型分裂として観測され、この現象は、理論的 にも理解されている [5])。 $\mathsf{NO_3}$ の $\mathsf{v_4}$ などの非縮退振動準位では l により Λ が誘起さ れることが報告されており [8]、さらに、我々は 3v4 の a1 と a2 への分裂が振電相互 作用によると考えている。一方、 $^2\Sigma$ 直線分子(|A|=0)の変角振動準位(|A|=1)の $^2\Pi$ 振電準位では、スピン-回転相互作用に類似したスピン-(変角)振動相互作用による分裂が 期待されている [6]。これら2つの議論を鑑み、現時点では、3v4(a') N= 1 準位の大きな 分裂は *l* による誘起 Λ により増強されたスピン-振動相互作用によると考えている。

^[1] M. Fukushima and T. Ishiwata, 71th ISMS, paper RF01.

^[2] K. Kawaguchi et al., J. Mol. Spectrosco. 268, 85 (2011).

^[3] M. Fukushima and T. Ishiwata, 68th ISMS, paper WJ03. [5] J. Hougen, *J. Chem. Phys.* **36**, 519 (1964). [6]

 ^[4] E. Hirota, *J. Mol. Spectrosco.* 343, 81 (2018).
[6] A. J. Merer and J. M. Allegretti, *Can. J. Phys.* 49, 2859 (1971).

^[7] K. Tada *et al.*, *J. Chem. Phys.* **141**, 184307 (2014).

^[8] E. Hirota, J. Mol. Spectrosco. **310**, 99 (2015).