(*o*)H₂-HCN 分子錯体の内部回転遷移のミリ波ジェット分光 (九州大院・理) ○原田 賢介・田中 桂一 Millimeterwave spectroscopy of the internal rotation bands of (*o*)H₂-HCN (Kyushu University) ○Kensuke HARADA and Keiichi TANAKA

The *ortho-* and *para*-H₂–HCN complexes have different structures, H₂ is attached to the nitrogen and hydrogen end of HCN, respectively, for (*o*)- and (*p*)-H₂ complexes^[1, 2]. We have measured the *j*=1-0 internal rotation band of (*o*)H₂-HCN, where *j* is the quantum number for the HCN internal rotation. We assigned most of intense lines to the Σ_1 - Σ_0 and Π_1 - Σ_0 bands using the double resonance of the internal rotation transitions and the ground state rotational transitions, although some assignments were still tentative^[3]. In the present study, we have confirmed the assignment using the double resonance of the

internal rotation transitions and the rotation transitions in the internal rotation excited states.

[序論] H₂-HCNはH₂とHCNが弱く結合した分子錯体で、 H₂とHCNはそれぞれ内部回転をしている(図 1)。H₂は、 内部回転状態 *j*_{H2}により異なる核スピン*I*_{H2}を持ち、*j*_{H2}=0 では *para*-(*I*_{H2}=0), *j*_{H2}=1 では *ortho*-水素(*I*_{H2}=0)である。従 って(*o*)H₂-HCN 錯体の基底状態(*j*_{HCN}=0)^[1, 3]には, *j*_{H2}の分 子軸成分($k_{H_2} = 0,1$)により二つの準位、 Σ_0 ($k_{H_2} = 0$)と $\Pi_0(k_{H_2} = 1)$,が存在し、 Π_0 準位の方が Σ_0 準位より40 cm⁻¹ 程高いエネルギーを持つ。 Σ_0 準位からは、HCNの内部回 転の励起状態(*j*_{HCN}=1, *k*_{HCN}=0,1)の副準位 $\Sigma_1,\Pi_1(k_{HCN}=0,1)$ への二つ内部回転遷移 $\Sigma_1-\Sigma_0$ 及び $\Pi_1-\Sigma_0$ が生じる(図 2)。

我々は、先に図3の様な(*o*)H₂-HCNの内部回転遷移を報 告した^[3]。図中の●印は帰属の確かな信号であるが、△印

は直接の帰属の証拠がない。錯体の内 部運動は自由度が高く、通常の方法に よる遷移周波数と強度の予測が極め て難しい。本研究では、更に錯体の内 部運動の励起状態での純回転遷移お よび、純回転-内部回転遷移の二重共 鳴効果の観測を行い、これらの未確定 信号の帰属を確定する事を目的とし た。

[実験] HCN, H₂, Ne (0.5, 25, 75%)の 混合ガスをパルスノズルより真空槽 内に噴射しH₂-HCN 錯体を生成した。 回転温度は 3K 程である。50-250 GHz

図 1(o) H₂-HCN の内部回転

図 2 (o) H₂-HCN の内部回転準位

図 3. (o) H2-HCN の内部回転遷移

ミリ波を White-型多重反射セルに入射し、超音 速ジェット中を 10 往復させた。二重共鳴効果の 観測には偏光面が 90[°] 異なる 2 つの MMW 波を 重ねて吸収セルに入射し、出射後、グリット偏 光子を用いてプローブ光のみを検出した。MMW 波のビームが太く (50 ϕ) 遷移の飽和が容易で ない、従って二重共鳴効果は、カスケード型励 起の場合のみに観測され、V-, Λ -型励起の時は観 測出来なかった。

[結果と解析]

図4に実験に関連するエネルギー準位を示す。図中の 実線矢印がこれまで帰属された内部回転遷移である。

- Π₁^e 状態の *J*=3-2 回転遷移(太実線矢印)の強度 は、Π₁-Σ₀バンドの *R*(1)内部回転遷移をポンプす ると、二重共鳴により3倍に増加した(図 5)。これ より *R*(1)の帰属を確定した。
- Π₁^f 状態の *J*=2-1 純回転遷移(太白抜矢印)を測定した(図6)。この周波数を足すとΠ₁-Σ₀バンドの*Q*(1)と*Q*(2)の周波数の差が基底状態Σ₀の回転遷移 *J*=2-1と一致する。これより*Q*(1)と*Q*(2)の帰属が確定した。
- 3) Σ₁-Σ₀バンドの R(1)の帰属のために、P(2)と Σ₁状態の *F*-2-1 回転遷移との二重共鳴信号の 観測を目指したが検出できなかった。更に周波 数範囲を広げてΣ₁-Σ₀の R(1)線を探している。

帰属の確定した $\Pi_1 - \Sigma_0$ および $\Sigma_1 - \Sigma_0$ バンドの 内部回転遷移(計8本)と純回転遷移(計8本)を解 析して表1の分子定数を求めた。 Π_1 -および Σ_1 状態のエネルギー、j=1状態の回転定数 B_1 、および Π_1 状態のl-型二重項定数 q_1 等である。今後 $(p)H_2$ -HCN 錯体の帰属を進めていく予定であ る。

[1]M. Ishiguro, et al., J. Chem. Phys. 115, 5155 (2001).
[2]M. Ishiguro, et al., Chem. Phys. Lett. 554, 33 (2012).
[3]山中, et al, 分子科学討論会, 3P021 (2010).

図 5. Π₁^e J=3-2 遷移の二重共鳴効果

表 1. Molecular Constants of (o)H₂-HCN

$E_{\Pi 1}$	165600.844	MHz
$E_{\Sigma 1}$	187359.563	MHz
B_1	12082.627	MHz
$q_{\Pi 1}$	972.818	MHz
eQq_{Π}	0.51	MHz