(*o*)H₂-HCN の内部回転バンドのミリ波ジェット分光 (九州大院・理) ○原田 賢介・田中 桂一 Millimeterwave spectroscopy of the internal rotation bands of (*o*)H₂-HCN

(Kyushu University) OKensuke HARADA and Keiichi TANAKA

The *ortho-* and *para*-H₂–HCN complexes have different structures, H₂ is attached to the nitrogen and hydrogen end of HCN, respectively, for (*o*)- and (*p*)-H₂ complexes^[1, 2]. We have measured the *j*=1-0 internal rotation band of (*o*)H₂-HCN, where *j* is the quantum number for the HCN internal rotation. We assigned most of intense lines to the Σ_1 - Σ_0 and Π_1 - Σ_0 bands using the double resonance of the internal rotation transitions and the ground state rotational transitions, although only two lines, *R*(0) and *P*(2), were assigned to the Σ_1 - Σ_0 band^[3]. In the present study, we have extended measurement and assigned *R*(1) and

P(3) lines of the the Σ_1 - Σ_0 band, from which we have determined the rotational constant of the Σ_1 state.

[序論] H₂-HCN はH₂と HCN が弱く結合した分子錯体で、 H₂と HCN はそれぞれ内部回転をしている(図 1)。H₂は、 内部回転状態 *j*_{H2} により異なる核スピン *I*_{H2}を持ち、*j*_{H2} =0 では *para*- (*I*_{H2}=0), *j*_{H2} =1 では *ortho*-水素 (*I*_{H2}=0)である。従 って(*o*)H₂-HCN 錯体の基底状態 (*j*_{HCN}=0)^[1, 3]には, *j*_{H2}の分 子軸成分($k_{H_2} = 0,1$) により二つの準位、 Σ_0 ($k_{H_2} = 0$)と $\Pi_0(k_{H_2} = 1)$, が存在し、 Π_0 準位の方が Σ_0 準位より 40 cm⁻¹ 程高いエネルギーを持つ。 Σ_0 準位からは、HCN の内部回 転の励起状態(*j*_{HCN}=1, *k*_{HCN}=0,1)の副準位 $\Sigma_1,\Pi_1(k_{HCN}=0,1)$ への二つ内部回転遷移 $\Sigma_1-\Sigma_0$ 及び $\Pi_1-\Sigma_0$ が生じる(図 2)。

我々は、H₂-HCN の回転スペクトル[1, 2]を報告後、(*o*)H₂-HCN 錯体のHCN 内部回転遷移の帰属を進めてきた。

内部回転励起状態での純回転遷 移および、純回転-内部回転遷移の 二重共鳴効果の観測を行い、 Σ_1 - Σ_0 バンドの P(2), R(0)および Π_1 - Σ_0 バンドの P(2), Q(1), Q(2), R(0), R(1), R(2)遷移を帰属した[3]。 Σ_1 状態は、J=1準位の位置のみがわ かっており、回転定数は、決定で きていなかった。本研究では、光 源がなくこれまで未観測であっ た周波数領域を観測し、新たに、 Σ_1 - Σ_0 バンドの P(3)と R(1)を帰 属し、 Σ_1 状態の回転定数を決定

図 1. (o) H₂-HCN の内部回転

図 2. (o) H2-HCN の内部回転準位

したので報告する。

[実験] HCN, H₂, Ne (0.5, 25, 75%) の混合ガスをパルスノズルより真空槽内に噴射し H₂-HCN 錯 体を生成した。回転温度は 3K 程である。ミリ波を White-型多重反射セルに入射し、超音速ジェ ット中を 10 往復させ観測した。岡山大、静岡大より光源を借りて、これまで未観測であった 218.5-231.5 GHz の領域を観測し、光源が弱く感度良い観測が行われていなかった 231.5-240 GHz 領域を再測定した。図3に紫矢印で今回観測した領域を示す。これを含めて、これまで 68-251 GHz の範囲(緑線の範囲)が連続に観測されている。

[結果と解析]

今回新たに掃引した領域のうち 226.1 GHz に非常に強い遷移が観測された(図4)。こ れまでの観測でもっとも強い $\Sigma_1 - \Sigma_0 R(0)$ 遷 移のさらに2倍の強度で観測された。この遷 移を Σ_1 - $\Sigma_0 R(1)$ と仮定すると、基底状態の J=2-1 と 3-2 回転遷移の周波数より Σ_1 - Σ_0 P(3)遷移は 98.7 GHz に観測されるはずであ る。98.7 GHz にコンビネーションディファレ ンスが 200kHz 以内で一致する遷移が観測さ れたことにより $\Sigma_1 - \Sigma_0$ バンドの P(3)と R(1)の帰属が確定した(図3、青2重丸)。

 $\Sigma_1 - \Sigma_0$ バンドの P(2)と R(0)より Σ_1 の J=1 状 態の位置が定まり、 $\Sigma_1 - \Sigma_0$ バンドの $P(3) \ge R(1)$ より Σ_1 の J=2 状態の位置が定まるので、 Σ_1 状態の回転定数が決定できる。

帰属されたすべての遷移周波数を最小自乗 法解析し、表1の分子定数を決定した。解析に は 1-型2重項分裂を含む通常の回転のハミル トニアンを用い、 Σ_1 - Π_1 状態間のコリオリ相 互作用は解析に含めていない。

Σ1状態の回転定数は、Π1状態の回転定数よ り14%小さい。これは重心間を結ぶクラスタ ー軸を含む面内で HCN が回転しているか、クラ スター軸の回りを HCN がプロペラのように回 転しているかによる重心間距離の違いを表し

表 1.

(0)H ₂ -HCN の分子定数		
$E_{\Sigma 1}$	190813.96(11)	MHz
$B_{\Sigma 1}$	10402.952(25)	MHz
$E_{\Pi 1}$	165582.164(78)	MHz
$B_{\Pi 1}$	12105.017(28)	MHz
$D_{\Pi 1}$	37.6678(21)	MHz
q	980.215(87)	MHz
q_J	-373.312(23)	MHz
σ	= 132 kHz	

ていると考えられる。現在、 Σ_1 状態の遠心力歪定数の決定のため、 $\Sigma_1 - \Sigma_0$ バンドの R(2)遷移の 探索を進めている。

[謝辞] 岡山大より Gunn 発信器、静岡大より Klystron をお借りした。ご厚意に深く感謝する。 [1]M. Ishiguro, et al., J. Chem. Phys. 115, 5155 (2001).

[2]M. Ishiguro, et al., Chem. Phys. Lett. 554, 33 (2012).

[3]原田·田中, 分子分光研究会, L03 (2019).