Program (20th Symposium on Molecular Spectroscopy)

Mar. 9, 2020 (Tue.) Building L1, Room 32, Kitasato University

10:00 OPENING REMARKS

[chair: Haruki Ishikawa] 10:05 L01 Optical-optical double resonance spectroscopy of the $f' 0^+ ({}^1D_2)$ ion-pair state of I³⁵Cl (1) : Determination of the spectroscopic constants (Tokyo Univ. of Science) <u>Yoshiki Muto</u>, Shoma Hoshino, Daichi Nishimichi, Hiroki Yamaoka, Koichi Tsukiyama

10:15 L02 Optical-optical double resonance spectroscopy of the $f' 0^+ ({}^1D_2)$ ion-pair state of I³⁵Cl (2) : Determination of the transition dipole moment function (Tokyo Univ. of Science) <u>Kento Ishii</u>, Shoma Hoshino, Koichi Tsukiyama

- 10:25 L03 Collisional process of I₂ in the ion-pair state: Electron-transfer reaction with rare-gas atoms
 (Tokyo Univ. of Science) <u>Oji Yamamoto</u>, Daichi Nishimichi, Shoma Hoshino, Koichi Tsukiyama
- 10:35 L04 High resolution laser spectroscopy of S₁←S₀ transition of acetaldehyde (Kobe Univ. / Kyoto Univ.) <u>Kosuke Nakajima</u>, Akira Shimizu, Masaaki Baba, Shunji Kasahara
- 10:45 L05 High resolution laser spectroscopy of S1←S0 transition of acetaldehyde and acetone
 (Kobe Univ. / Kyoto Univ.) <u>Akira Shimizu</u>, Kosuke Nakajima, Masaaki Baba, Shunji Kasahara
- 10:55 L06 Detection of CH₃NCO in Sagittarius B2(M) core by radio observations (Tokyo Univ. of Science / Sophia Univ. / Nihon Univ. / Gunma Univ.) <u>Yuki Ohno</u>, Mistunori Araki, Yoshiaki Minami, Takahiro Oyama, Shuro Takano, Nobuhiko Kuze, Yoshihiro Sumiyoshi, Koichi Tshukiyama
- 11:15 L07 Direct observation of the IR induced isomerization of the hydrogen-bonded phenol cluster cations (Kitasato Univ.) <u>Masayoshi Ozeki</u>, Hikaru Sato, Masataka Orito, Haruki Ishikawa

11:35 LUNCH

[chair: Mitsunori Araki]
13:00 L08 Fluorescence spectra of jet-cooled thioanisole
(Aoyama Gakuin Univ. / J.F.Oberlin Univ.) <u>Naoto Mizuno</u> , Shota Nakajima, Tasuku Isozaki,
Wataru Kashihara, Tadashi Suzuki
13:10 L09 Determination of Binding Energies in Benzene-deuterium Clusters using 2-color Laser Ionization
(Tokyo Inst. Tech.) Masaki Usui, Kenta Mizuse, Yasuhiro Ohshima
13:30 L10 High-resolution spectroscopy of polycyclic aromatic hydrocarbons by a Ti:Sapphire laser controlled with an optical frequency comb
(Fukuoka Univ. / Kobe Univ. / Nicolaus Copernicus Univ. / Kyoto Univ.) S. Yamasaki, M.
Misono, S. Kasahara, A. Nishiyama, M. Baba
13:50 Break
[chair: Hideto Kanamori]
14:00 L11 Quantum state separation of ammonia in real space with the Stark deflector (Tokyo Inst. Tech.) <u>Kazuki Ueno</u> , Kenta Mizuse, Yasuhiro Ohshima
14:10 L12 Rotational spectroscopy of methane dimer by time resolved Coulomb explosion imaging
(Tokyo Inst. Tech.) Yuya Tobata, Kenta Mizuse, Yasuhiro Ohshima
14:30 L13 Radiative vibrational cooling of N_2O^+ in the cryogenic ion storage ring RICE
(Saitama Univ. / RIKEN / Rikkyo Univ.) A. Hirota, R. Igosawa, N. Kimura, S. Kuma, P. M.
Mishra, K. Chartkunchand, Y. Nakano, T. Yamaguchi, T. Azuma
14:50 Break
[chair: Yasuhiro Ohshima]
15:10 L14 Photoionization spectrum of aniline in superfluid helium droplets
(Tokyo Metropolitan Univ. / RIKEN) <u>Arisa Iguchi</u> , Susumu Kuma, Hajime Tanuma, Toshiyuki Azuma
15:20 L15 High resolution spectroscopy of $X(0^+) \rightarrow A(0^+)$, B(1) transition of PbO
(Univ. Toyama / Kyoto Univ.) Takehiro Suzuki, Sei Shiraishi, Ryota Takabatake, Masaaki

Baba, Katsunari Enomoto

15:40 L16 Research of the ³Σ state of N₂ molecule considering as boson pair and Fermion pair system using NIR sub-Doppler spectroscopy (Tokyo Inst. Tech.) <u>Kyoko Miyashita</u>, Hideto Kanamori

- [chair: Susumu Kuma] 16:10 L17 Development of acoustic resonator for detection of elastic wave distortions in the para-H₂ crystal by IR spectroscopy (Tokyo Inst. Tech.) <u>Ryosuke Saigusa</u>, Hideto Kanamori
- 16:20 L18 Analysis of hydrogen Q₁ (0) peaks induced by CH₃F in *para*-hydrogen crystal using two IR lasers (Tokyo Inst. Tech.) <u>Akira Nakaigawa</u>, Hideto Kanamori
- 16:40 L19 Study of *ortho-para* symmetry through the comparison of hyperfine constants of S₂³⁵Cl³⁷Cl and S₂³⁵Cl₂ by microwave spectroscopy (Tokyo Inst. Tech. / National Chiao Tung Univ.) <u>Naoko Hara</u>, Hideto Kanamori, Yasuki Endo

18:00-20:00 BANQUET

Mar 10, 2020 (Tue.) Building L1, Room 32, Kitasato University

[chair: Takahiro Oyama]

- 10:00 L20 Slow electron detachment process via weak vibronic coupling for Si2⁻ (Tokyo Metropolitan Univ. / RIKEN / Toho Univ. / Gothenburg Univ. / Tianjin Univ.) <u>S.</u> <u>Iida</u>, S. Kuma, J. Matsumoto, T. Furukawa, H. Tanuma, H. Shiromaru, T. Azuma, V. Zhaunerchyk, K. Hansen
- 10:10 L21 Microwave Zeeman effect of methanol IV (Univ. Toyama / NAOJ/SOKENDAI) <u>Kojiro Takagi</u>, Shozo Tsunekawa, Kaori Kobayashi, Tomoya Hirota
- 10:20 L22 Tunneling-rotation interaction of ¹³C-substituted tropolone (Kyushu Univ. / National Chiao Tung Univ.) <u>Keiichi Tanaka</u>, Kensuke Harada, Yasuki Endo
- 10:40 L23 Millimeterwave spectroscopy of the internal rotation bands of (*o*)H₂-HCN. (Kyushu Univ.) <u>Kensuke Harada</u>, Keiichi Tanaka

11 00	D 1
11:00	Break

- 11:10 L24 IR-IR double resonance of the 2v₃ A₁ v₃ band of methane (AIST / Keio Univ.) <u>Hiroyuki Sasada</u>, Sho Okubo, Hajime Inaba, Shoko Okuda
- 11:30 L25 Observation of the pure rotational spectra of dimethylphosphine (Sophia Univ. / Tokyo Univ. Science) <u>Takahiro Oyama</u>, Yoshiyuki Kawashima, Nobuhiko Kuze
- 11:50 L26 Infrared laser spectroscopy of difference bands of the NO₃ radical (Okayama Univ.) <u>K. Kawaguchi</u>, J. Tang

12:10 LUNCH

[chair: Shunji Kasahara]

 13:00 L27 Dispersed fluorescence spectroscopy of NO₃
 - out-of-plane vibrational levels -(Hiroshima city Univ.) <u>Masaru Fukushima</u>

- 13:30 L29 Collision-induced absorption of oxygen molecule observed by photoacoustic spectroscopy
 (Aoyama Gakuin Univ. / Kanagawa Univ.) <u>Wataru Kashihara</u>, Toya Hemmi, Akio Kawai, Tadashi Suzuki

13:50 Break

[chair: Masaru Fukushima]

- 14:00 L30 Ab initio theoretical calculation on rotational constants and averaged bond length of benzene
 (Kyoto Univ. / FOCUS / Ochanomizu Univ.) Masaaki Baba, Umpei Nagashima, Tsuneo Hirano
- 14:20 L31 High-resolution spectroscopy of 1,2-benzanthracene with reference to an optical frequency comb
 (Fukuoka Univ. / Kobe Univ. / Nicolaus Copernicus Univ. / Kyoto Univ.) <u>M. Misono</u>, S. Yamasaki, S. Kasahara, A. Nishimiya, M. Baba

14:40 L32 High-resolution laser spectroscopy of NO₂ radical in 615-630 nm region (Kobe Univ. / Kyoto Univ.) <u>Shunji Kasahara</u>, Kohei Tada, Michihiro Hirata, Takumi Yoshizawa

15:00 CONCLUDING REMARKS

L01 一塩化ヨウ素分子の f'0⁺(¹D₂)イオン対状態の光–光二重共鳴分光 (1): 分光定数の決定

(東理大・理)○武藤由樹・星野翔麻・西道大地・山岡広季・築山光ー

Optical-optical double resonance spectroscopy of the $f' 0^+ ({}^1D_2)$ ion-pair state of $I^{35}Cl(1)$: Determination of the spectroscopic constants (Tokyo Univ. of Sci.) <u>Yoshiki Muto</u>, Shoma Hoshino, Daichi Nishimichi, Hiroki Yamaoka, Koichi Tsukiyama

The ion-pair states of homonuclear halogen molecules have been the subject of intensive spectroscopic study since long ago. However, no sufficient spectroscopic parameters have been accumulated so far for the ion-pair states of heteronuclear halogen molecules. In this work, we conducted spectroscopic investigation of the $f' 0^+ ({}^1D_2)$ ion-pair state of $I^{35}Cl$ by the $f' 0^+ ({}^1D_2) \leftarrow B$ ${}^3\Pi(0^+) \leftarrow X {}^1\Sigma^+$ sequential laser excitation. 442 transitions for the $f' 0^+ ({}^1D_2) \leftarrow B {}^3\Pi(0^+)$ band in the range of $2 \le v_{f'} \le 17$, $13 \le J_{f'} \le 50$ were observed and analyzed, yielding a set of molecular parameters in a Dunham-type expansion.

The simulated Franck–Condon (Einstein A coefficient) variation using the RKR potential for the f' 0^+ $(^1D_2)$ ion-pair state was in good agreement with the intensity distribution pattern in the UV fluorescence spectrum from the f' 0^+ $(^1D_2)$ state to the ground state.

【序】ハロゲン分子は、イオン対状態と呼ばれる解離極限で正負の原子イオン対に相関する 電荷分離型の励起状態を持つ。等核二原子ハロゲン分子のイオン対状態に関しては、古くか ら分光研究の対象となっており、精度の良い分光定数やポテンシャル曲線が多数報告されて いる。一方、異核二原子ハロゲン分子に関してはその解明は不十分である。例えば、一塩化 ヨウ素分子(ICI)のf'0⁺(¹D₂)イオン対状態は 1993 年に振動構造のみ明らかにされたが、ポテン シャル曲線を決定するための情報が得られていない[1]。本研究では ICI のf'0⁺(¹D₂)イオン対 状態の回転構造まで含めた解析を行い、分光定数及びポテンシャル曲線を決定した。

【実験方法】一塩化ヨウ素分子の $f' 0^+ ({}^1D_2)$ イオン対状態への励起は、価電子状態である $B^3\Pi(0^+) (v_B = 2)$ を中間状態とする $f' 0^+ ({}^1D_2) \leftarrow B^3\Pi(0^+) \leftarrow X^1\Sigma^+$ 遷移により行った。励起光源には 2 台の Nd³⁺:YAG レーザー(Continuum Surelite I and II)で励起した、2 台の色素レーザー

(Continuum ND6000)を用いた。1 台目の色素レー ザーからの出力光を $B^{3}\Pi(0^{+})(v_{B}=2) \leftarrow X^{1}\Sigma^{+}(v_{X}=0)$ の Pump 光とし、2 台目の色素レーザーから の出力光を、KDP 結晶を用いて第二高調波に変 換し $f'0^{+}(^{1}D_{2})(v_{f'}=2-17) \leftarrow B^{3}\Pi(0^{+})(v_{B}=2)$ の Probe 光とした。これら 2 系統のレーザー光を、 ICl を蒸気圧で封入した石英セル中で空間的に 重ね合わせた。電子励起状態から発生する紫外 領域の蛍光を分光器(Horiba/Jobin-Yvon iHR320, f=32 cm, 2400 grooves/mm)で波長分散し、光電 子増倍管(Hamamatsu Photonics R928)により検出 した。Pump 光および Probe 光の波長は波長計 (HighFinesse/Ångstrom WS-5)を用いて校正した。

【結果・考察】図1は $f'0^+({}^1D_2) \to X {}^1\Sigma^+$ 遷移 を検出し、probe 光の波長を掃引して得られた $f'0^+({}^1D_2)(v_{f'}=2 - 17) \leftarrow B {}^3\Pi(0^+)(v_B=2)$ 励起 スペクトルである。この際、Pump 遷移は B ${}^3\Pi(0^+)(v_B=2) \leftarrow X {}^1\Sigma^+(v_X=0)$ の P₃₅回転線 (17619.2 cm⁻¹)を用いた。図2に $f'0^+({}^1D_2)(v_{f'}=2) \leftarrow B {}^3\Pi(0^+)(v_B=2)$ 遷移の励起スペクトル を示した。Hund's case (c)における $\Delta\Omega = 0$ 遷移 に対応する回転選択律 $\Delta J = \pm 1$ に従って、P₃₄, R₃₄遷移が観測されている。

電子状態の振動準位は、発光スペクトルを 分光したときに現れる強度分布から帰属した。 イオン対状態の平衡核間距離は基底状態と比 べて長いので、基底状態の高振動準位への遷 移のみが観測される。この場合、Franck-Condonの原理より、発光スペクトルの強度分 布はイオン対状態の振動波動関数の二乗(存 在確率分布)に従って変調を受けたようにな る。図2中の $v_{f'} = 2$, R_{34} の遷移に帰属したラ インを分光すると、図3(a)のような3つの極 大強度を持つ強度分布が得られた。

本研究では、 $f' 0^+ ({}^1D_2)$ イオン対状態の種々の振動回転準位への励起を行い $2 \le v_{f'} \le 17, 13 \le J_{f'} \le 50$ の範囲で合計 442 本の遷移を観測した。得られた各遷移波数から $f' 0^+ ({}^1D_2)$ イオン対状態のエネルギーを算出し、Dunham-typeの分光定数を決定した(表 1)。

得られた分光定数の評価は分散蛍光スペク トルのシミュレーションから行った。図 3(b) には決定した分光定数を用いて得られたシミ ュレーションスペクトルを示した。これらの スペクトルは良い一致を示しており、今回決 定した分光定数がf'0⁺(¹D₂)イオン対状態のポ テンシャル曲線を記述するために十分な精度 を有していることがわかる

[1] Donovan *et al.*, *Chem. Phys. Lett.*, **207**, 129 (1993).

表 1. I³⁵Cl の f' 0⁺ (¹D₂)イオン対状態の Dunham 係数

parameter	value(cm ⁻¹)
Y_{00}	51200.42(13)
Y_{10}	160.599(50)
Y_{20}	-0.1760(55)
<i>Y</i> ₃₀	-0.00216(18)
Y_{01}	0.05908(17)
$10^4 Y_{11}$	-1.284(39)
$10^6 Y_{12}$	-2.37(19)
$10^8 Y_{02}$	-3.198(16)

 $XY_{02} = -4Y_{01}^3/Y_{10}^2$ により算出した。

ー塩化ヨウ素分子の f'0⁺(¹D₂)イオン対状態の光─光二重共鳴分光 (2): 遷移双極子モーメント関数の決定 (東理大・理) 〇石井健斗・星野翔麻・築山光一

Optical-optical double resonance spectroscopy of the *f* '0⁺ (¹*D*₂) ion-pair state of I³⁵Cl (2) : Determination of the transition dipole moment function (Tokyo Univ. of Sci) <u>Kento Ishii</u>, Shoma Hoshino, Koichi Tsukiyama

Halogen molecules have a series of ion-pair states as charge transfer excited states. Enormous efforts have been paid for understanding the electronic structures in connection with the development of laser excitation techniques. The ion-pair states of halogen molecules have been the subject of intensive spectroscopic study since long ago. So far, the potentials of the ion-pair states are most often revealed experimentally and a great volume of spectroscopic data has been published. Under those circumstances, a renewed interest has arisen for these excited states in view of providing the benchmark for the study on their dynamical properties such as the radiative lifetimes and the transition dipole moment (TDM) function. In this work, we determined the TDM function of the $f'0^+({}^1D_2) - X{}^1\Sigma^+$ transition of ICl by using an optical-optical double resonance (OODR) technique.

[序] ハロゲン分子のイオン対状態と呼ばれる一連の電子励起状態は古くから分光研究の対象となってきた[1,2]。近年ではそれら電子状態の動的性質が研究されており、低位の電子状態とは異なる性質を持つことが明らかにされてきた。その一例として、遷移双極子モーメント(TDM)関数が挙げられる。イオン対-価電子状態間遷移における TDM 関数は、価電子状態間遷移とは異なり分子の核間距離 R に強く依存することが示唆されている[3]。一方で、近年の急速な計算資源の拡大や計算手法の開発・発展に伴って、重元素を含む分子系の電子励起状態に関する化学的精度を有した理論的取り扱いも可能になってきている。分子構造やポテンシャルエネルギー等の静的性質のみならず、蛍光寿命や TDM 関数などの電子状態固有の動的性質も量子化学計算から得られるようになってきた[4]。しかしながら、それら理論計算を評価する上での実験的情報が不足しているのが現状である。そこで本研究では、一塩化ヨウ素分子(ICI)のf'0⁺(¹D₂)イオン対状態と電子基底状態間の遷移における、核間距離に対する TDM 関数を実験的に決定した。

[実験方法] 中間状態 $B^{3}\Pi(0^{+})$ を経由した光-光二重共鳴法によって励起された $f'0^{+}({}^{1}D_{2})$ (v'=2-17)イオン対状態から、電子基底状態 $X^{1}\Sigma^{+}$ への蛍光スペクトルを測定した。 $f'0^{+}({}^{1}D_{2}) \rightarrow X^{1}\Sigma^{+}$ 遷移に関する Franck-Condon 因子 $q_{v',v''}$ を計算し、次のようなシミュレーションスペクトルを 生成した。

$$I_{v',v''}(\lambda) = C\tilde{v}^3 \sum_{v',v''} < v'', J''|M_e(R)|v', J' >^2 \delta(\lambda,\lambda_i) = C\tilde{v}^3 \sum_{v',v''} M_e(R)^2 q_{v',v''}\delta(\lambda,\lambda_i)$$
(1)

ここで、ῦは遷移の波数、M_e(R)は TDM 関数である。δ(λ, λ)はピークの広がりを表し、本研究 では、発光スペクトルの分解能に合わせた幅を持つガウス関数を使用した。また C は定数で あり、実測のスペクトルとスケールが合うように値を決定した。そして、実測のスペクトル とシミュレーションスペクトルの強度パターンを比較し、TDM 関数を決定した。この時、各 遷移時の核間距離は

$$E'_{\rm pot}(\bar{r}) - E''_{\rm pot}(\bar{r}) = E(v') - E(v'')$$
(2)

のように、*r*-centroid の仮定のもと計算したものを用いた。ここで、 $E'_{pot}(\bar{r}) - E''_{pot}(\bar{r})$ は difference potential であり、 $f'0^+({}^1D_2)$ 状態と $X\,{}^1\Sigma^+$ 状態のポテンシャル曲線のデータを用いて関 数として求めることができる。また E(v') - E(v'')は遷移エネルギーであり実測の蛍光スペ クトルの遷移波長から求めることができるので、式(2)を解いて遷移時の核間距離を*r*-centroid \bar{R} として決定した。

[結果・考察] 種々の圧力下における発光スペクトルの時間分解波形の取得をおこない、 $f'0^+$ (1D_2)状態の蛍光寿命を τ_0 = 3.61(17) ns、 $f'0^+(^1D_2) - X^1\Sigma^+$ 遷移の平衡核間距離における TDM を $M_e(R_e)$ = 3.6 D と決定した。

次に発光スペクトルの解析から TDM 関数の R 依存性の決定をおこなう。図 1(a)は $f'0^+({}^{1}D_2)$ (v'=7, J'=35) からの実測の蛍光スペクトルで、また(b)は TDM の核間距離依存性を無視し、 Einstein の A 係数のみを用いたシミュレーションスペクトルである。平衡核間距離での遷移 に相当する 262 nm 付近のピーク強度で規格化し、式(1)の定数 C を決定することで、両スペ クトルのスケールを合わせた。図 1 (a), (b) のスペクトルを比較すると、強度パターンが不一 致な領域が見られる。特に、275 nm 付近のピークは強度パターンが著しく異なっている。こ こでシミュレーションスペクトル(b)の強度パターンが実測スペクトルと一致するように $M_e(R)^2$ を計算し、各核間距離での TDM 関数を決定した。このように決定した TDM 関数を用 いてシミュレーションした結果が図 1(c)であり、実測のスペクトルとの良い一致を示してい る。同様の解析を v'= 2, 4, 6, 7, 10 の蛍光スペクトルについてもおこない、TDM 関数を図 2 のように決定した。

[Reference]

- [1] K. P. Lawley and R. J. Donovan, J. Chem. Soc. Faraday Trans., 89, 1885 (1993)
- [2] V. A. Alekseev, Opt. Spectrosc., 99, 719 (2005)
- [3] N. K. Bibinov et al, J. Chem. Phys., 109, 10864 (1998)
- [4] V. A. Alekseev, Opt. Spectrosc., 116, 3 (2014).

L03 ヨウ素分子のイオン対状態における衝突過程一希ガス原子との電子移動反応 (東理大理)〇山本桜路・西道大地・星野翔麻・築山光一

Collisional process of I_2 in the ion-pair state: Electron-transfer reaction with rare-gas atoms

(Tokyo University of Science) <u>Oji Yamamoto</u>, Daichi Nishimichi, Shoma Hoshino, and Koichi Tsukiyama

Halogen molecules have a series of electronically excited states called ion-pair states that correlate with the pairs of negative and positive atomic ions at the dissociation limits. The energy transfer dynamics in the ion-pair states has been studied in the both field of quantum chemical calculations and experiments. Recently we reported the collisional energy transfer by self-quenching in the 2_u (1D_2) ion-pair state of I_2 ¹. In this work, we report the collisional process of I_2 with rare-gas atoms (Ar, Kr, Xe). We measured the decay rate of the 2_u (1D_2) state by using an optical-optical double resonance technique and estimated the collisional cross section. The very large cross-section was explained by harpoon mechanism.

【序】ハロゲン分子はイオン対状態と呼ばれる、解離極限において正負の原子イオン対に相関する、電荷分離型の電子励起状態を持つ。古くからイオン対状態の電子構造については多くの研究が行われ、レーザー励起法の開発とともにその詳細が解明されてきた。このような状況のもと、近年ではイオン対状態における緩和ダイナミクスに注目が集まってきた。我々はこれまでに、ハロゲン分子のイオン対状態において、自然放射増幅過程や自己消光過程を観測し、それら過程の重要性を評価してきた。例えば、ヨウ素分子の2_u(¹D₂)状態励起に際しては、エネルギー的周辺に存在する 2_g(¹D₂) 状態への衝突誘起エネルギー移動過程の観測をおこない、そのメカニズムに関して議論をしてきた¹。本研究ではヨウ素分子の2_u(¹D₂) イオン対状態における、希ガス原子との衝突過程について速度論的解析を行った。

【実験】2_u(¹D₂)イオン対状態への励起は、価電子状態である c¹ $\Pi_g \sim B^3\Pi(0_{\tau}^{+})$ 混合状態を中間 状態とする光-光二重共鳴法により行った。光源には Nd³⁺:YAG レーザー励起の 2 台の色素 レーザー使用した。1 台目の色素レーザーからの出力光(~19885.0 cm⁻¹)を c¹ Π_g (v_c =13, J_c =23) ~ B³ $\Pi(0_{\tau}^{+})$ (v_B =59, J_B =22) ← X¹ Σ_g^{+} (v_X =0, J_X =23)遷移の励起光とし、2 台目の色素レーザー

からの出力光の第 2 高調波(34638.6 cm⁻¹)を 2_u(¹D₂)(v=3, J=23) \leftarrow c¹ Π_g ($v_c=13, J_c=23$)遷 移の励起光とした。これらのレーザー光を、気 体のヨウ素分子および希ガス原子(Ar, Kr, Xe) を封入した石英セル中で空間的に重ね合わせ た。電子励起状態からの蛍光を分光器で波長 分散し、光電子増倍管で検出した。

【結果・考察】検出した 2_u (¹D₂)状態からの蛍 光の時間波形を図 1 に示す。図中の(a)は励起 レーザーパルスの時間波形、(b)は Kr 原子を 0.86 Torr で封入した際の 2_u (¹D₂)状態から時間 波形である。これらの時間波形をデコンボリュ ーション解析することで(図 1. (c))、2_u (¹D₂)状 態の寿命の測定を行った。

図 1.2_u(¹D₂) (v = 3)状態からの蛍光の時間波 形、励起光パルスの時間波形、およ びコンボリューション波形

任意の消光原子(分子)数密度における蛍光 寿命 τは Stern-Volmer 式より次のように与え られる。

$$\frac{1}{\tau} = k_{\rm R} + k_{\rm q}^{\rm I_2}[{\rm I}_2({\rm X})] + k_{\rm q}^{\rm Rg}[{\rm Rg}]$$

2_u(¹D₂)イオン対状態における蛍光寿命を、 様々な希ガスの圧力下で測定することで得ら れた Stern-Volmer プロット(図 2)から希ガスと の衝突による消光速度定数 k_q^{Rg} を求めた。また 消光係数k_g^{Rg}の値から、次の関係を用いて衝突 断面積 σ および衝突半径 R^* の値を決定した 図 2. 各消光原子における Stern-Volmer プロット (表1)。

$$\sigma = \frac{k_{\rm q}^{\rm Rg}}{c_{\rm rel}}$$

ここで、crelは励起ヨウ素分子-希ガス間の平均相対速度であり、Maxwell速度分布を仮定し て計算した。

•				
_	消光原子(分子)	消光速度定数 kq	衝突断面積 σ	衝突半径 R*
		$[\mathrm{cm}^3 \mathrm{molcul}^{-1} \mathrm{s}^{-1}]$	[Å ²]	[Å]
	Ar	$(4.55\pm0.42) \times 10^{-10}$	107 ± 9	5.84
	Kr	$(4.23 \pm 0.11) \times 10^{-10}$	135 ± 4	6.55
	Xe	$(6.83 \pm 0.16) \times 10^{-10}$	255 ± 6	9.01
	I2(基底状態) ^[1]	$(1.30 \pm 0.01) \times 10^{-10}$	583 ± 4	13.6

表 1. 各消光原子(分子)の消光速度定数 k.、衝突断面積 σ. および衝突半径 R*

ヨウ素分子の2u(¹D₂)イオン対状態は、剛体球モデルと比較して非常に大きな衝突断面積を有 している。このような大きな断面積を持つ衝突過程は、銛打ち反応によって解釈できる。銛

打ち反応の臨界反応半径 Rharp は、消光原子 (分子) のイオン化エネルギーEipおよびイオ ン対状態のヨウ素分子の電子親和力Eeaを用 いて

$$\frac{1}{R_{\rm harp}} = \frac{4\pi\varepsilon_0}{e^2} (E_{\rm ip} - E_{\rm ea}({\rm IPS}))$$

と表すことができる。図3に示すように、実 験的に得られた衝突半径 R*は消光分子のイ オン化エネルギーに対して線形的な依存性 を示す。以上より 2u (¹D₂)イオン対状態にお ける消光過程は銛打ち反応によって進行し ていることが考えられる。

と衝突半径(逆数 1/R*)

[1] S. Hoshino, Y. Nakano, M. Araki, T. Ishiwata, K.Tsukiyama, Phys. Chem. Chem. Phys. 18, 14292 (2016).

^ー アセトアルデヒドの S₁←S₀ 遷移の高分解能レーザー分光 ^{(神戸大理 ª}.神戸大分子フォト^ゅ.京大院理 [®])

〇中島康輔 ^a • 清水陽 ^a • 馬場正昭 ^a • 笠原俊二 ^b

High resolution laser spectroscopy of S₁←S₀ transition of acetaldehyde (Kobe Univ.ª, Kyoto Univ.^b)

Kosuke Nakajima^a, Akira Shimizu^a, Masaaki Baba^b, Shunji Kasahara^a

Rotationally resolved high-resolution fluorescence excitation spectra of acetaldehyde molecule have been observed by crossing a single mode UV laser and a molecular beam. The observed spectra around 30370 cm^{-1} correspond to $14_0^{0-}15_0^4$ band and the typical linewidth was about 40 MHz.

【序】アセトアルデヒドはメチル基の内部回転の研究における代表的な分子で、その内部回転と分子全体の回転との相互作用が回転スペクトルに影響を与えることが知られている。本研究では、 $S_1 \leftarrow S_0$ 遷移の中で比較的強度の大きい $14_0^{0} \cdot 15_0^4$ バンドの 30370 cm⁻¹ 付近で高分解能 蛍光励起スペクトルの測定を行った。アセトアルデヒドの $S_1 \leftarrow S_0$ 遷移の回転構造の研究は以前にも行われている^{1,2} が、本研究ではより分解能の高いスペクトルの測定を試みた。

【実験操作】Nd:YVO4レーザー(SpectraPhysics Millennia Xs)で励起した単一モード波長可変色 素レーザー(Coherent CR699-29)の出力光から,第2次高周波発生用外部共振器(SpectraPhysics WavetrainSC)を用いることで単一モード紫外レーザー光を得た。アセトアルデヒドの蒸気をパ ルスノズルで真空中に噴出させて,その先のスキマーを通すことで並進方向をそろえた分子 線を得た。この分子線とレーザー光を垂直に交差させ,発生する蛍光を光電子増倍管で検出 し,ドップラー幅を抑えた高分解能の蛍光励起スペクトルを得た。球面鏡と回転楕円体鏡を 組み合わせた高感度検出システムで蛍光を効率よく検出部に集めた。また2 atm 程度の Ar ガ スをキャリアガスとして用いたスペクトルも測定した。

【結果】回転線まで分離したアセトアルデヒドの S₁←S₀ 遷移 14₀⁰⁻15₀⁴ バンドの蛍光励起スペ クトルの測定に成功した。振動モード_{V14, V15} はそれぞれアルデヒド水素の面外変角振動,メチ

ル基の内部回転に対応する。測定で得ら れたスペクトルの一部を図1に示す。ス ペクトル線の線幅は40 MHz 程度であっ た。図1の下側,上側はそれぞれキャリ アガスを用いた場合,用いなかった場合 のスペクトルである。キャリアガスを用 いた下側のスペクトルは上側のスペク トルよりも回転温度が低く,スペクトル のピークの本数が減少し,強度比も明ら かに変化した。高温時のスペクトルは幅 広く分布した回転構造を持ち複雑なス ペクトルが得られた。今後,帰属と解析 を進めたいと考えている。

【参考文献】

- (1) Y.-C. Chou, C.-L. Huang, I.-C. Chen C.-K. Ni, A. H. Kung, J. Chem. Phys. 115, 5089(2001).
- (2) H. Liu, E. C. Lim, A. Niño, C. Muñoz-Caro, R. H. Judge, D. C. Moule, *J. Mol. Spectrosc.* 190, 78(1998).

L05 アセトアルデヒドおよびアセトンの S₁←S₀ 遷移の高分解能レーザー分光 (神戸大理[®], 京大院理^b, 神戸大分子フォト[®]) O清水陽[®]・中島康輔[®]・馬場正昭^b・笠原俊二[®]

High resolution laser spectroscopy of S₁←S₀ transition of acetaldehyde and acetone

(Kobe Univ.^a, Kyoto Univ.^b) <u>A. Shimizu^a, K. Nakajima^a, M. Baba^b, S. Kasahara^a</u>

Rotationally-resolved high-resolution florescence excitation spectra of $S_1 \leftarrow S_0$ electronic transition of acetaldehyde have been observed by crossing a single mode UV laser beam perpendicular to a molecular beam. We have also tried to observe the high-resolution spectrum of acetone, however, we have not obtained any signal of acetone. Now we are trying to improve the experimental condition for acetone.

【序】アセトアルデヒド、アセトンは代表的なカルボニル化合物で、C=Oの面外振動、メチル基の内部回転があるため、分子科学的な観点から非常に興味深い分子である。アセトンの電子遷移については、これまでにパルスレーザーによって励起スペクトルが得られているが[1],[2]、本研究ではより精密な分子の情報を得ることを目的に線幅の狭い連続発振単一モードレーザーを用いて高分解能スペクトルの観測を試みた。

【実験】光源にはNd:YVO4 レーザー(Spectra Physics Millennia Xs)励起の単一モード波長可変色 素レーザー(Coherent CR699-29,色素:DCM,線幅:数 MHz)を用いた。その出力光を第二高調波 発生用外部共振器(Spectra Physics WavetrainSC)に入射することによって単一モード紫外レーザー 光を得た。市販のアセトンまたはアセトアルデヒドから生じた蒸気をパルスノズルから真空チャ ンバー内に噴出させスキマーを通すことで並進方向のそろった分子線を生成した。この分子線を 真空チャンバー内でレーザーと直交させ、生じた励起分子による蛍光を光電子増倍管で検出する ことによってサブドップラー高分解能蛍光励起スペクトルを得ることができる。この際、球面鏡 と回転楕円体鏡を組み合わせた高輝度反射集光鏡を分子線とレーザーの交点に設置し蛍光の検出 効率を高めた。

【結果】アセトンで高分解能励起スペクトルの観測を試みたが、現段階では観測に成功して いない。そこで、同一条件でサンプルをアセトアルデヒドに変えたところ、容易にスペクト ルを観測することができた。スペクトルが観測できる条件を探るためアセトアルデヒドの比 較的強度の小さい140⁰+150², 140⁰-150¹,バンドのスペクトルの観測を行い、観測に成功した。Fig.1 に観測されたアセトアルデヒドの140⁰+150² バンドの高分解能励起スペクトルを示す。現在も引き 続きアセトンについてスペクトルの観測を試みている。

[1] M. Baba, I. Hanazaki, and U. Nagashima, J. Chem. Phys. 82, 3938 (1985).

[2] M. Drabbels, J. Heinze, W. Leo Meerts, J. Reuss, Chem. Phys.163, 193 (1992).

電波観測による星形成領域 Sagittarius B2(M)における CH₃NCO の検出

(東理大 ª, 上智大 ^b, 日本大 ^c, 群馬大 ^d) O大野有紀 ^a・荒木光典 ^a, 南賢明 ^a・小山貴裕 ^{a,b}・高野秀路 ^c・ 久世信彦 ^b・住吉吉英 ^d・築山光一 ^a

Detection of CH₃NCO in Sagittarius B2(M) core by radio observations

(Tokyo University of Science^a, Sophia Univ.^b, Nihon Univ.^c, Gunma Univ.^d) <u>Yuki Ohno^a</u>, Mitsunori Araki^a, Yoshiaki Minami^a, Takahiro Oyama^{a,b}, Shuro Takano^c, Nobuhiko Kuze^b, Yoshihiro Sumiyoshi^d, and Koichi Tsukiyama^a

Chemical compositions of molecular clouds are very different from those of comets. One of the typical examples is a case of CH₃NCO. The ratio of CH₃NCO to its precursor HNCO, *i.e.*, [CH₃NCO]/[HNCO], is high in a comet (>4), although it is low (<0.3) in molecular clouds. An abundance of CH₃NCO is expected to be held and/or increased during evolutionary process of a cloud. A couple of an old core and a young core having the similar chemical compositions needs to be investigated for this evolutionary process. In this work, we aimed to detect CH₃NCO in the middle (M) core, which is relatively older than the north (N) core, in Sagittarius B2 region with the 45 m telescope of Nobeyama Radio Observatory. CH₃NCO was detected in the (M) core, and the column density and the rotational temperature were derived to be $N = (4.3 \pm 2.1) \times 10^{13}$ cm⁻² and $T_{rot} = (32 \pm 9)$ K, respectively. Similarly, an abundance of HNCO is estimated to be $N = (1.3 \pm 0.5) \times 10^{15}$ cm⁻² ($T_{rot} = 21 \pm 2$) K. Thus, the ratio of [CH₃NCO]/[HNCO] = 0.032 suggests that an abundance of CH₃NCO is held during evolutionary process of the Sagittarius B2 region.

【目的】原始地球における最初の有機物は、彗星衝 突によりもたらされたと考えられている。一方で、 星間空間の分子雲と彗星では化学組成が大きく異 なる。そのひとつに、ペプチド結合と同様の NCO 骨格を有し前生物的分子と呼ばれる CH₃NCO (methyl isocyanate) がある。これまでに CH₃NCO (methyl isocyanate) がある。これまでに CH₃NCO は彗星 67P [1]および星形成領域 Orion KL [2]、 IRAS 16293-2422 [3]、Sagittarius (Sgr) B2(N) [4]で 発見されている。CH₃NCO とその前駆体 HNCO の 比 [CH₃NCO]/[HNCO] は、彗星では大きな値 (>4) を、星形成領域では小さな値 (<0.3) をとる (表 1)。 そのため、分子雲から彗星に至る過程で CH₃NCO 量の保持や増大が起こると予想される。本研究で は、化学進化段階の異なる分子雲コアのペアを用

い、これらの状況を捉えることを目指した。Sgr B2 領域に注目し、既報の(N)コア[4]より進化の進んだ(M)コアでの CH₃NCO の検出と、[CH₃NCO]/[HNCO] の導出を試みた。

【観測】国立天文台野辺山 45 m 電波望遠鏡を用いて 2019 年 2 月 16-22 日に Sgr B2(M)に対して探査を 行った。分光計として SAM45 を用いた。入力信号の 帯域幅は 2 GHz、16 個の信号を処理可能である。周 波数分解能を 244 kHz(1 kms⁻¹)に設定した。受信 機は両偏波(H, V)を検出可能な FOREST を使用し、 回転遷移 $J = 10 \rightarrow 9$, 11 \rightarrow 10, 12 \rightarrow 11, 13 \rightarrow 12 が位置 する 85-114 GHz 帯を観測した。

【結果と考察】CH₃NCO の回転線を 19 本検出でき た(図 2)。各ピークに対してガウス関数でフィッテ ィングを行った。回転ダイアグラム(図 3)を用いる と、回転温度は(32 ± 9)K、柱密度は(4.3 ± 2.1)× 10¹³ cm⁻²となった。HNCO についても本研究室での 2016、2018 年の観測結果(図 4)から、回転温度は (21 ± 2)K、柱密度は(1.3 ± 0.5)×10¹⁵ cm⁻²となっ た。よって、[CH₃NCO]/[HNCO] = 0.032 と算出され た。この値は(N) コアの値と同程度である。したが って、最も単純なモデルとして Sgr B2 領域では、分 子雲の進化において CH₃NCO量が保持されていると 考えられる。今後、分子雲の進化過程における CH₃NCO 量の増大を捉えるためには、中小質量星形 成領域も含めさらなる調査が必要である。

Goesmann *et al., Science*, **349**, 689 (2015). [2] Cernicharo *et al., A&A*, **587**, L4 (2016).
 Ligterink *et al., MNRAS*, **469**, 2219 (2017). [4] Halfen *et al., ApJ*, **812**, L5 (2015).
 Kuan *et al., ApJ*, **459**, 619 (1996).

フェノール水素結合クラスターカチオンの 赤外誘起異性化反応の直接観測 (北里大理[®],北里大院理^b)の尾関将義[®]・佐藤光^b・折戸雅隆^b・石川春樹[®]

Direct observation of the IR induced isomerization of the hydrogen-bonded phenol cluster cations

(Kitasato Univ.) Masayoshi Ozeki, Hikaru Sato, Masataka Orito, Haruki Ishikawa

To investigate microscopic natures of the structural fluctuation of the hydrogen-bond networks, we have observed an IR-induced isomerization of the hydrogen-bonded phenol cluster cations trapped in the cold ion trap. In the present study, an isomer of hydrogen-bonded phenol-methanol cluster cation, $[PhOH(MeOH)_3]^+$, having a ring-type hydrogen-bond structure is excited by an IR laser pulse. The isomer can isomerize to another isomer having a chain-type hydrogen-bond structure with a photon energy of the IR laser. Then, the chain-type isomer is probed by ultraviolet photodissociation technique. We have succeeded in observing the isomerization from the ring to the chain-type structures by the collisional cooling with the buffer gas.

【序】水素結合は自然界で主要な分子間相互作用の1つであり、その微視的ネットワーク構造の性質の解明を目指し、気相分子クラスターの分光測定や量子化学計算による研究が行われている。これまで赤外分光と量子化学計算による水素結合構造の決定が精力的に行われてきた。微視的水素結合研究の次の段階として、現在その温度依存性の研究が行われている。最も基本的な温度効果は異性体分布の温度依存性である。そこで我々はこれまでにフェノールと水、メタノールのクラスターカチオンについて、温度制御条件下における紫外光解離(UVPD)スペクトルの測定を行い、水素結合構造の異なる異性体分布の温度依存性を明らかにしてきた。[1,2] その結果、[PhOH(H₂O)₅]⁺、[PhOH(MeOH)_{3,4}]⁺において、極低温では環状の水素結合を持つ Ring 型異性体のみが存在するが、温度の上昇により鎖状の水素結合から成る Chain 型異性体へ優勢な水素結合構造が入れ替わることを明らかにした。Fig.1 に[PhOH(MeOH)₃]⁺の例を示す。極低温では25278 cm⁻¹に Ring 型異性体の0-0 バンドが現れている。150 K になると 25380 cm⁻¹ に Chain 型異性体の0-0 バンドが強く現れており、異性体の相対分布の逆転が起きていることがわかる。水素結合ネットワークの特徴の1つである構造揺らぎは、分

子クラスターにおいては、水素結合構造が異 なる異性体間の異性化と対応付けられる.そ こで更なる研究の発展として[PhOH(H₂O)₅]⁺ について、赤外誘起異性化反応の観測を行っ た.[3]実験の結果、異性化の観測には成功し たが、定量的な議論を行うためには異性化の 収量が不十分であり、測定条件等の検討が必 要であった.そこで本研究では対象の系を [PhOH(MeOH)₃]⁺に変更して微視的水素結合 構造に対する赤外誘起異性化反応の観測を行 い、より明確で定量的に議論することを目的 とした.

Fig. 1 [PhOH(MeOH)₃]⁺の UVPD スペクトルと 異性体の安定構造

【実験】本研究では超音速ジェット法及び共鳴多光子イオン化法(REMPI)により [PhOH(MeOH)₃]⁺を生成した.[PhOH(MeOH)₃]⁺は1段目の四重極質量選別器による質量選別の 後,オクタポールイオントラップに捕捉した.ここでバッファーガス冷却法によりイオンを 冷却した.本研究ではイオンは30K以下に冷却されている.その後Ring型異性体の吸収波 数に固定した赤外光を照射すると,吸収した光子のエネルギーを利用して異性化が起こる. 適当な遅延時間の後,イオンに紫外光を照射する.紫外吸収により生じた解離フラグメント は2段目の四重極質量選別器により選別・検出される.特定のフラグメントをモニターしな がら紫外光の波数を掃引してUVPDスペクトルを測定した.本測定では赤外光の有無による UVPDスペクトルの変化から異性化を観測した.励起に用いる赤外光の波数はIR-UV 二重共 鳴法によりRing型異性体の赤外スペクトルを測定した.

【結果】まず励起に用いる赤外波数を決定す るために、冷却条件で IR-UV 二重共鳴スペク トルを測定した. 結果を Fig. 2 に示す. 3400 cm⁻ ¹付近に水素結合した OH 伸縮バンドがブロー ドに表れていることがわかる. そこで、赤外 波数を 3450 cm⁻¹に固定し、赤外光と紫外光の 遅延時間を 10 μs にして測定した UVPD スペ クトルを Fig.3 の下段に示した.赤外照射あり (IR-on) となし (IR-off) のスペクトルを重ね て示している. 上段には IR-on のスペクトルか ら IR-off のスペクトルを引いた差スペクトル を示した.これを見ると赤外光を照射すると, Ring 型異性体の分布が減少するとともに Chain 型異性体の分布が増加していることが はっきりとわかる.このスペクトルは赤外光 による Ring 型から Chain 型への異性化,即ち 赤外励起による水素結合構造の変化を示して いる.

さらに赤外光と紫外光の遅延時間を変化さ せて異性化の追跡を行った.その結果,およそ 20 μs までは Chain 型異性体の増加が確認され たが,それ以降は減少に転じ,最終的に初期状 態に緩和した.これはトラップ内での He バッ ファーガスとの衝突冷却による異性化の逆反 応が進行し,さらにクラスターの冷却が起こ ったものと解釈された.今回の結果は水素結合 クラスターにおける赤外誘起構造変化を示した 数少ない例の1つである.

Fig.2 [PhOH(MeOH)₃]⁺の Ring 型異性体の赤外 スペクトル

Fig.3 赤外誘起異性化の観測 下段:赤外光照射時(IR-on)と非照射時(IR-off) のUVPD スペクトル.上段:差スペクトル.

【参考文献】

[1] Ishikawa, Kurusu, Yagi, Kato, Kasahara, J. Phys. Chem. Lett. 8, 2541 (2017).
 [2] 折戸ら, 第13回分子科学討論会, 2A02 (2019).

- [3] 佐藤ら, 第12回分子科学討論会, 4A07 (2018).

ジェット冷却したチオアニソールの蛍光スペクトル (青学大院理エ[®], 桜美林大リベラルアーツ^b) 〇水野尚人[®]・中島祥太[®]・磯崎輔^b・柏原航[®]・鈴木正[®]

Fluorescence spectra of jet-cooled thioanisole

(Aoyama Gakuin Univ.^a, J. F. Oberlin Univ.^b)

Naoto Mizuno^a, Shota Nakajima^a, Tasuku Isozaki^b, Wataru Kashihara^a, Tadashi Suzuki^a

Relaxation dynamics from an electronically-excited state is deeply related to electronic states and vibrations of the molecule. For anisole, it has been reported that the low-frequency vibrational mode of the methoxy group promotes intersystem crossing¹). In this study, the laser-induced fluorescence (LIF) excitation and the single vibronic level fluorescence (SVLF) spectra of jet-cooled thioanisole were measured. The intense and the most red-shifted band observed in the LIF excited spectrum (Fig. 1) was assigned to the origin band. The bands in the SVLF spectrum obtained by pumping the origin band (Fig. 2) were assigned with the aid of quantum chemical calculations. SVLF spectra were also measured by pumping the vibronic bands, and the vibrational and vibronic structures of thioanisole were discussed in detail. Analysis of the SVLF spectra showed that strong vibrational mixing due to the Duschinsky effect occurs between vibrational modes of T and 10b.

電子励起状態からの緩和ダイナミクスは分子の電子状態や振動と深く関わっている.アニソー ルではメトキシ基 -OCH3の低波数振動モードが項間交差を促進することが報告されている¹⁾.本 研究では,超音速ジェット分光法を用いて,メチルチオ基 -SCH3を有するチオアニソールのレー ザー誘起蛍光(LIF)励起スペクトル及び単一振電準位蛍光(SVLF)スペクトルを測定し,電子 基底状態及び励起状態における振動構造について議論した.

Fig. 1 にチオアニソールの LIF 励起スペクトルを示す. 最も低波数側の 34508 cm⁻¹に観測された 強度の大きいバンドを S₁←S₀遷移の 0⁰バンドと帰属した. このバンドを励起して得られた SVLF スペクトル (Fig. 2) と量子化学計算の結果から,振動バンドの帰属を行った. LIF 励起スペクト ルで観測された振電バンドを励起し,SVLF スペクトルを測定した.振動バンドの帰属を行い, 電子基底状態と励起状態における振動構造について詳細に議論した.電子励起状態において,低 波数面外振動モード T と 10b の間に Duschinsky 効果による強い振動ミキシングが示された.

Fig. 1 LIF excitation spectrum of thioanisole.

Fig. 2 SVLF spectrum of thioanisole obtained by pumping the origin band.

1) R. Matsumoto et al., J. Mol. Struct., 2005, 735-736, 153-167.

2 波長レーザーイオン化による ベンゼン-重水素クラスターの結合エネルギーの決定 (東エ大理) 〇薄井仁紀・水瀬賢太・大島康裕

Determination of Binding Energies in Benzene-deuterium Clusters using 2-color Laser Ionization

(Tokyo Institute of Technology.) <u>Masaki Usui</u>, Kenta Mizuse, Yasuhiro Ohshima

[Abstract] We measured ionization threshold and dissociation threshold of the benzene– D_2 van der Waals cluster by using a resonance two-color laser ionization technique. Both spin isomers, $Bz-oD_2$ and $Bz-pD_2$, have be observed. The binding energies for $Bz-D_2 \rightarrow Bz + D_2$ were determined from the threshold values: 275 ± 20 cm⁻¹ and 305 ± 15 cm⁻¹, respectively, for $Bz-oD_2$ and $Bz-pD_2$ in the S₀ state.

【序論】新しいエネルギー源である水素の貯蔵材として炭素材料を用いることが提案されて いる。その貯蔵形態や貯蔵効率を考察する上で、水素と炭素系の分子間相互作用を理解する ことが重要と考えられる。そのような相互作用を研究するモデル系として、気相中のベンゼ ン-水素クラスターが挙げられる。気相クラスターを対象とすることで、着目する分子間相互 作用のみを取り扱うことができる。当研究室ではこれまでに、ベンゼン-水素クラスター Bz-(H₂)_n(n=1~3)について高分解能紫外分光による測定が行われ、ベンゼン-水素間距離やク ラスター内ダイナミクスについての情報が得られている [1]。等核2原子分子である水素は、 核スピン関数の異なるオルトとパラの2種類の異性体が存在する。パラ水素 pH₂とオルト水 素 oH₂の核スピン重率は1:3 であり、これらの核スピン異性体に対する分子間相互作用の差 異を明らかにすることは興味深い。分子間相互作用を理解する上では、相互作用形態だけで なくエネルギー値を求めることも重要な課題である。これまでの実験的な報告として、ノル マル水素試料を用いて Bz-(H₂)_n(n=1~3)の測定が行われているが、Bz-(oH₂)_n(n=1~3)のみ測 定され、Bz-(pH₂)_n は観測されなかった[2]。これは結合エネルギーが Bz-(pH₂)_nの方が小さく、 かつ、核スピン重率の関係で存在比が少ないからだと考えられている。

水素に対して重水素を用いる場合、パラ異性体*p*D₂とオルト異性体*o*D₂の核スピン重率は1: 2 であるので *o*D₂の存在比が大きく、結合エネルギーが弱い方と考えられている Bz-(*o*D₂)*n*も 観測できると期待される。そこで本研究では、ベンゼン-重水素クラスターBz-D₂に対する 2 波長レーザーイオン化によって、イオン化しきい値、解離しきい値を測定することにより、 結合エネルギーの決定を行った。オルトとパラの両方を測定することによって、核スピン異 性体における結合エネルギーの差異を議論した。

【実験手法】2 台の波長可変色素レーザーの第二高調波を用いて共鳴 2 波長レーザーイオン 化を行い、Bz-oD₂ と Bz-pD₂のイオン化しきい値と解離しきい値を測定した。励起光を特定 の波長に固定することによって、クラスター種を選択的に励起させた。イオン化光を掃引す ることで、イオン化効率曲線およびフラグメントイオン生成曲線を得た。ベンゼン-重水素ク ラスターは、室温のベンゼン試料蒸気に、ヘリウムに混合されたノルマル重水素ガスを通し、 パルスバルブを用いてオリフィスから真空チャンバーに噴出させることによって生成した。 生成したクラスターイオンは、飛行時間型質量分析器により質量選別した。

【結果と考察】図1に、Bz-oD₂の(a)イオン化効率曲線と(b)フラグメントイオン生成曲線を示 す。イオン化効率曲線の立ちあがり前後をそれぞれ直線フィットし、その交点をしきい値と した。同様にしてフラグメントイオン生成曲線から解離しきい値を決定した。ここで(b)のス ペクトルでは、ベンゼン単量体に由来する Bz⁺イオンによるバックグランドについて補正を行 った。求めたイオン化しきい値と解離しきい値を用いて、エネルギーサイクルから結合エネ ルギーを決定した(図2参照)。基底状態の結合エネルギー $D_0(S_0)$ は Bz-oD₂の解離エネルギー $\omega_1 + \omega_2$ から、ベンゼンのイオン化エネルギーIE(Bz)を引いて求められる。励起状態の結合エ ネルギー $D_0(S_1)$ は、 $D_0(S_1) = \omega_2 + E_1(Bz) - IE(Bz)$ として求められる。イオン化状態の結合エネ ルギーは、Bz-oD₂のイオン化エネルギー $\omega_1 + \omega_2$ からベンゼンのイオン化エネルギーIE(Bz)を引いて求められる。Bz-pD₂に関しても、同様の手順で結合エネルギーを算出した。結果を 表1にまとめる。

図 1. Bz-oD₂における、(a)イオン化効率曲線, (b)フラグメントイオン生成曲線

図 2. Bz-D2のエネルギーダイアグラム

結合エネルギーは、基底状態ではパラよりもオルトの方が~30 cm⁻¹ほど小さいことが明らかになった。核スピン異性体間で結合エネルギーに差があることはこれまで予測されてきているが、実験的に定量的見積もりを得たのは本研究が初めてである。また、Bz-oD₂において 基底状態とイオン化状態を比較すると、後者が

より安定となった。これは、ファンデルワール スクラスターにおいて一般的に見られる傾向で – ある。一方、 $Bz-pD_2$ では、基底状態とイオン化 – 状態で結合エネルギーの大小関係は逆転した結 果となった。 pD_2 の最低回転準位がj=1である ことから、クラスター中の重水素の内部回転の 効果で説明できる。

表 1. Bz-D₂の結合エネルギー (cm⁻¹)

	Bz–oD ₂	$Bz-pD_2$
$D_0(S_0)$	275±20	305±15
$D_0(S_1)$	251±18	274±14
$D_0(\operatorname{Ion})$	322±28	291±22

【参考文献】

[1] M. Hayashi et al., J. Phys. Chem. A, 117, 9819 (2013).

[2] 林岐、修士論文、東京工業大学理学院化学系、2018年3月.

光周波数コムで制御された Ti:Sapphire レーザーによる 多環芳香族炭化水素の高分解能分光

(福岡大理^a, 神戸大分子フォト^b, ニコラス・コペルニクス大^c, 京大院理^d) 〇山崎翔^a・御園雅俊^a・笠原俊二^b・西山明子^c・馬場正昭^d

High-resolution spectroscopy of polycyclic aromatic hydrocarbons by a Ti:Sapphire laser controlled with an optical frequency comb

(Fukuoka Univ^a., Kobe Univ^b., Nicolaus Copernicus Univ^c., Kyoto Univ^d.)

S. Yamasaki^a, M. Misono^a, S. Kasahara^b, A. Nishiyama^c, and M. Baba^d

We have been studied the detailed structures and dynamics of polycyclic aromatic hydrocarbons. We constructed a system that controls the frequencies of a Ti:Sapphire laser with an optical frequency comb to observe high-resolution spectra more accurately. In this study, we observed spectra of 9-methylanthracene with the developed system.

【はじめに】

多原子分子の高分解能レーザー分光は、電子励起状態の詳細な構造や状態間の相互作用 を研究するための強力なツールである。我々はこれまでに、ベンゼンやナフタレンのなど の小さい芳香族炭化水素の高分解能分光を行っており、現在は、より多くのベンゼン環を 持つ芳香族炭化水素の分光を進めている。これらの大きな分子の分光計測では、遷移周波 数を精確に測定する必要があるため、これまでに、光周波数コムの各モードを基準として Ti:Sapphire レーザーの周波数を制御するシステムを開発した。今回は、このシステムを用 いて、9-メチルアントラセンの高分解能分光を行った。9-メチルアントラセンは、メチル 基が大振幅振動(内部回転)を行うため、多環芳香族炭化水素の中でも興味深い分子であ る。

【実験システム】

この研究に用いた実験システムは、本研究会における御園の発表と同じものである。分 光光源として波長約 742 nm の Ti:Sapphire レーザーを用い、第 2 高調波を発生させた。真 空チャンバー内で超音速分子線と直交させ、その 2 つに直交する方向から、光電子増倍管 によって蛍光を観測した。また、Ti:Sapphire レーザー光の一部を分岐し、光周波数コムを 基準としてレーザー光の周波数制御を行った。分岐した光を駆動周波数 f_{AO}の音響光学周 波数シフターに通して周波数をシフトさせ、光周波数コムの出力光と重ね合わせてビート が観測した。光周波数コムは、10⁵から 10⁶本のモードが一定間隔に並んだスペクトルをも つ光源である。モード間隔を f_{rep}、キャリア・エンベロープ・オフセット周波数を f_{CEO} とす ると、n 番目のモードの周波数は nf_{rep}+f_{CEO} と表せる。Ti:Sapphire レーザーの周波数を f_{haser} 、観測されたビートの周波数を f_{beat} とするとこれらの周波数の間には次の関係が成り立つ。

$$f_{\text{laser}} + 2f_{\text{AO}} = (nf_{\text{rep}} + f_{\text{CEO}}) + f_{\text{beat}}$$
.

光周波数コムのモード周波数 $nf_{rep} + f_{CEO}$ を Cs 原子時計等の基準周波数にロックし、さら に、 f_{beat} が一定になるように制御すると、この式の右辺は一定となる。したがって、 f_{AO} に よって f_{laser} を制御することができることがわかる。

【結果】

Figure 1 は 9-メチルアントラセンの S₁(0a'_1)←S₀(0a'_1)遷移および S₁(1e'')←S₀(1e'')遷移の スペクトルである。これらの遷移波数の差はおよそ 1 cm⁻¹ なので、2 つの遷移が重なって 観測されている。26931.6 cm⁻¹ 付近に幅が広く非対称なピークが見られるが、これは S₁(1e'')←S₀(1e'')遷移の Q 枝が分解されずに観測されたものと思われる。Q 枝よりも低波数 側に P 枝が、高波数側に R 枝が広がっている。線幅はおよそ 25 MHz であり、回転線まで 分離することができた。現在、この遷移と、S₁(3a'')←S₀(0a'_1)遷移および S₁(4e')←S₀(1e'') 遷移について、PGOPHER を利用して解析を進めている。

Fig.2 9 MA-メチルアントラセンのスペクトル

Stark デフレクターによる実空間でのアンモニアの量子状態分離 (東エ大理) 〇上野一樹・水瀬賢太・大島康裕

Quantum state separation of ammonia in real space with the Stark deflector (Tokyo Institute of Technology) <u>Kazuki Ueno</u>, Kenta Mizuse, Yasuhiro Ohshima

(Abstract)

The inversion motion of ammonia is one of the most recognized large-amplitude molecular vibrations. We are developing a new experimental setup to track the spacio-temporal propagation of the ammonia inversion. Here, a Stark deflector has been implemented to select one of the inversion doubling components by applying an inhomogeneous electric field. We examined spatial distribution of deflected ammonia in each quantum state by adopting REMPI measurements via the $\tilde{C}'^1A_1' \leftarrow \tilde{X}'A_1'$ transition.

【序論】

アンモニアの傘反転運動は、MASER にも利用されている重要な運動であり [1]、物理化学の標準的な教科書にも紹介されている [2]。我々は、この反転振動を実験的に実空間観測することに取り組んでいる [3]。その実現には、アンモニアの反転振動のトンネル分裂ペア0⁺,0⁻を空間的に分離する必要がある。本研究では、Stark デフレクターを新たに制作し、これを実装してアンモニアについて量子状態選別能の評価を行ったので報告する。

【実験】

図1に実験の模式図と、Stark デフレクターの中心部分の形状を示す。デフレクターは、下に向かって電場の絶対値が小さくなる、空間的に不均一な電場を生成する [4]。これに伴い、強い電場へ集まる量子状態 (High Field Seeker: HFS) と弱い電場に集まる量子状態 (Low Field Seeker: LFS) s は上下に分離する。各量子準位に対して、デフレクター中のトラジェクトリーについてシミュレーションを行い、十分に分離可能な電圧を探索した。この結果より、一方の電極は接地し、もう一方の電極に+5 kV 印加して利用した。空間的な量子状態の分離を検証するために、多光子共鳴イオン化 (REMPI) スペクトルを観測した。アンモニアの反転振動を考慮したスペクトルの帰属が報告されている2光子遷移 ($\tilde{C}'1A_1' \leftarrow X^1A_1$) を利用した [5]。

サンプルは、アンモニア水 (28%) を 0.25 MPa の Ar でバブリングして用いた。これをパル スバルブから放出し、振動・回転温度を冷却した分子線として導入した。分子線は、スキマ ーとスリットを通過した後、Stark デフレクターを経て検出領域へいたる。光源には、Nd:YAG レーザー (Surelite II-10, 532 nm) で励起した色素レーザー (ND6000, dye DCM, ~620 nm) の出 力を KDP 結晶で倍波に変換し利用した。空間分布測定では、ミラーとレンズを同時に動かす

ことで、レーザー光の水平を保ちつつ上下方向の平行移動を行った。

【Stark デフレクターによる空間分布の変化】

図2に、Stark デフレクターの電圧を0kV,5kV として空間掃引した結果を示す。横軸はレーザー と分子線の交点を原点としたレーザーの高さ、縦 軸はピークトップで規格化した相対強度を示す。

測定に用いた波数のうち、64710.2 cm⁻¹ は $|\nu_2, J, |K|\rangle = |0^-, 1, 1\rangle$ からの遷移に、63865.2 cm⁻¹ は $|0^+, 1, 1\rangle$ からの遷移に対応する。デフレクター に電圧を印加すると、空間分布のシフトが観測さ れた。シフトの様子から、0⁺は HFS、0⁻は LFS と確認できる。理想的には対称な空間分布が得ら れると期待されたが、実際は非対称となった。真 空装置全体の組み立て精度の問題と考えている。

【偏向した分子線の REMPI スペクトル】

図3に、Y=0 mm, ±3 mm に設定した REMPI スペクトルを示す。縦軸は、0kV,0 mm のピーク トップで規格化した相対強度を、横軸は2光子の エネルギー合計値を示す。

0 kV, Y = 0 mm のスペクトルには、|J, |K| = |1,1, |1,0)からの遷移が測定された。63868 cm⁻¹ 付近の 5 kV, Y = +3 mm でのスペクトルでは、 |J, |K| = |1,1)のピークのみが観測された。 HFS 由来のスペクトルなので、Stark 効果を受ける |M| = 1の状態が選択されたことを意味する。 LFS である0⁻由来のピークが現れる 64711cm⁻¹付 近には信号がない。一方、5 kV, Y = -3 mm では、 LFS 由来の|J, |K| = |1,1)のピークのみが現れ、 |M| = 1と帰属される。5 kV, Y = 0 mm で観測され たピークは、Stark 効果を受けない|J, K = |1,0)ま たは、|J, |K|, M = |1,1,0)に帰属される。

【まとめ】

今回、量子状態選別用の Stark デフレクター電 極を作成した。5 kV印加することで、 $0^+ \ge 0^-$ を 空間的に分離可能であることを確認した。

【参考文献】

[1] Gordon, J. P., Zeiger, H. J. & Townes, C. H. *Phys. Rev.* **99**, 1264 (1955).

[2] R. P. Feynman, R. B. Leighton, & M. Sands, *Lectures on Physics. Volume 3, Quantum Mechanics,* Addison-Wesley Publishing (1965).

[3] 上野 一樹、水瀬 賢太、大島 康裕:「アン モニア反転振動の実空間観測に向けて」第19回 分子分光研究会 L11 (2020).

[4] Hendrick L B. et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R263.

[5] Moana N. et al. Phys. Chem. Chem. Phys. 7, 1527, (2005).

図2. 電場による空間分布の変化。Y 軸原点 はレーザーと分子線の交点とした。

図3. Stark デフレクターによる量子状態選 別を受けたアンモニアに対する REMPI ス ペクトル。

L12 時間分解クーロン爆発イメージングによるメタン二量体の回転分光 (東工大院理) O戸畑佑哉・水瀬賢太・大島康裕

Rotational spectroscopy of methane dimer by time resolved Coulomb explosion imaging (Tokyo Institute of Technology) <u>Yuya Tobata</u>, Kenta Mizuse, Yasuhiro Ohshima

[Abstract] We measured the rotational spectrum of methane dimer by time resolved Coulomb explosion imaging. The observed spectrum consists of multiple series, indicating the presence of nuclear-spin isomers with different internal rotation states of the CH₄ unit. We determined the rotation constant and the intermolecular distance for each series. This experimental finding shows that the effective intermolecular distance depends on the internal rotational states. This result is important experimental information for the construction of the intermolecular potential energy surface for the methane dimer.

【序論】有機化合物間に働く分子間相互作用は、有機化合物の凝集や拡散などを決定づける 要因である。特に、アルキル基同士の相互作用はほとんどの有機化合物間で働くため重要で ある。気相中のメタン2量体(CH4)2はアルキル基同士の相互作用の最小モデルであり、その 構造やダイナミクスを調べることで、アルキル間の分子間力に関して分子レベルの知見が得 られると期待される。一般に、気相分子クラスターの構造決定にはマイクロ波分光による回 転遷移の観測が強力な手法となってきた。しかし、メタン2量体の永久双極子モーメントは ゼロもしくはきわめて小さいと考えられ、マイクロ波分光の適用は困難である。そこで本研 究では、永久双極子の有無に関わらず適用可能なクーロン爆発イメージングに基づく時間領 域回転分光を用いて、メタン2量体の構造情報を取得することを目的とした。

【実験】図1に実験スキームを示す。超音速分子線中に生成した(CH4)2に対して、ポンプ光(直線偏光,400 nm,390 fs,12 TW/cm²)を照射し、インパルシブラマン過程によって2量体の回転 波束ダイナミクスを誘起した。その後、遅延時間をおいてフェムト秒強レーザーパルス(プロ ーブ光:円偏光,800nm,~70 fs,2000 TW/cm²)を照射し、(CH4)2²⁺を経由したクーロン爆発過程 によって CH4⁺を放出させた。CH4⁺の放出角度分布はクーロン爆発直前の2量体の分子間軸分 布を反映する。そこで、ポンプープローブ間の時間差 *Δt* を掃引しながら2量体由来の CH4⁺ の角度分布を画像観測することで、ポンプ光誘起の回転ダイナミクスを追跡した。各遅延時 刻で得られた画像から整列パラメータを算出し、その時間トレースをフーリエ変換すること で回転スペクトルを得た。

図 1. クーロン爆発イメージングの実験スキーム

図 2. イオンの空間分布

【結果と考察】図2に、フェムト秒プローブ光のみで生じたイオンの空間分布を示す。CH_n+(n = 2-4)が観測された。CH₂+,CH₃+は、CH₄+の解離によって生成したと考えられる。ここで、CH₄+の空間分布に注目すると、分子線中のメタン単量体がイオン化された成分に由来するきわめて大きな信号が画像中心付近には観測された。画像外側の同心円が、2量体のクーロン爆発で生じ、反跳を受けた CH₄+の信号に帰属される。一般に、単量体に対する2量体の存在比は1%程度と見積もられるが、クーロン爆発イメージングを用いることで、2量体由来の信号を選択的に観測することができた。

図 3(a)に、ポンプ光照射後のイオン角度分布の時間変化を示す。ここではポンプ光の偏光 方向に対するイオンの放出角度をθとし、整列パラメータ〈cos²θ〉をプロットしている。図 3(a) において、ポンプ光照射直後に極大(分子間を結ぶ軸が偏光軸方向に揃った状況に対応する) が現れ、その後、周期的に極大が現れる回転ダイナミクスが観測された。図 3(a)の時間トレ ースをフーリエ変換し、図 3(b)の周波数領域のスペクトルを得た。

図 3(b)のスペクトルには多数のピークが現れているが、ほぼ等間隔で現れる複数の組(図 中●, \triangle ,*で示す)を見つけ出すことができた。これまでの研究によれば、(CH₄)₂中の CH₄ ユニットはほぼ自由に回転しており、CH₄単量体における3種の核スピン異性体のキャラク ターが2量体中でも保持されると考えられている [1]。この場合、2量体としては計6種類の 核スピン異性体が存在し、その各々が CH₄の内部回転に関して異なる状態に対応する。回転 遷移としては内部回転状態が異なる複数のシリーズが現れることになり、今回の観測結果と 良く対応している。また、各シリーズにおけるピーク間隔はどれも~4*B* となる。実測のピー ク間隔から *B*を求め、2つの CH₄分子間の距離を算出すると、●, \triangle ,*のそれぞれに対して、 ~416 pm,~428 pm と求められた。

理論的には、量子化学計算により(CH₄)₂の様々な配向に対して、エネルギーと最安定分子 間距離が求められている[2]。各配向でのエネルギーはほぼ等しく、二量体中ではメタン単体 はほぼ自由に回転できることが示唆されている。また、配向が異なると最安定分子間距離も 異なるという結果が出ており、CH₄ユニットの内部回転状態が異なると二量体の分子間距離 が異なるという今回の実験結果と良く対応している。

参考文献

[1] A. Hamdan, PhD Thesis, Department of Chemistry, Ruhr-Universität Bochum (Germany), December 2005.

[2] V. Duarte Alaniz, T. Rocha-Rinza, and G. Cuevas, J. Comput. Chem. 36, 364 (2015).

極低温静電型イオン蓄積リング RICE における N2O⁺の輻射振動冷却の観測

(埼玉大理^a,理研^b,立教大理^c) 〇廣田彩音^a・伊五澤涼^a・木村直樹^b・久間晋^b・ P. M. Mishra^b・K. Chartkunchand^b・中野祐司^c・山口貴之^a・東俊行^b

Radiative vibrational cooling of N₂O⁺ in the cryogenic ion storage ring RICE (Saitama Univ.^a, RIKEN^b, Rikkyo Univ.^c) <u>A. Hirota^a</u>, R. Igosawa^a, N. Kimura^b, S. Kuma^b, P. M. Mishra^b, K. Chartkunchand^b, Y. Nakano^c, T. Yamaguchi^a, T. Azuma^c

The radiative vibrational cooling process of the triatomic ion N_2O^+ was studied in a cryogenic ion storage ring operating at 4 K. The storage time dependence in the vibrational peak intensity of the symmetric stretching mode was measured in the predissociation spectra of the stored ion. The results manifested the vibrational cooling time scale in the range of seconds for the ion. The observed behavior in the excited states shows a reasonable agreement with a numerical simulation based on the rate equations of radiative cooling process. It is found that, however, to explain the time dependence in the ground state, more rigorous treatment is necessary for the excitation (ion production) and de-excitation (radiative cooling) processes.

【序】2011 年から理化学研究所・東原子分子物理研究室で開発が進められた RIKEN Cryogenic Electrostatic Ring (RICE) イオン蓄積リング[1]は、内部を極低温かつ超高真空に保つことで様々な 原子分子イオンを 1000 秒以上蓄積できる装置である。RICE は静電場でイオンビームを制御してい るため、質量に依らず大きいクラスターイオンや小型分子の蓄積が可能である。蓄積された分子イオンは孤立状態で赤外輻射の放出によってその内部温度が冷却されていき、蓄積時間に応じて振動 回転状態が制御された分子イオンビームを用意することが出来る。我々は RICE の極低温環境を用 いて星間化学で重要なイオン・分子反応を再現することを計画している。

【実験】本研究は、RICE内で蓄積した直線3原子分子イオンN₂O⁺の振動冷却観測を目的として行ったものである。N₂O⁺は対称伸縮モード、変角モード、非対称伸縮モードの3つの振動自由度を持つイオンであり、特に縮重している変角モードはFermi共鳴及びRenner-Teller効果により複雑な挙動を示すことが知られている。実験は、まずECRイオン源からのN₂O⁺ビームを任意の時間蓄積し、そこへ紫外レーザーを照射することで前期解離によって生成される中性フラグメントを検出する。異なる蓄積時間でこれを繰り返すことで、分子イオンの冷却が進む様子を観測するというものである。N₂O⁺の電子状態遷移A²Σ⁺ ← X²Πに伴う振動遷移について、振動基底状態と対称伸縮モードのみが励起した3つの状態に着目して観測を行い、それぞれに対して蓄積時間ごとの分布を直接的に求めた。また、振動遷移強度とレート方程式に基づく理論計算により冷却ダイナミクスを追った。

【結果と考察】測定の結果、蓄積時間10秒以内で振動状態分布が基底状態に落ちていく様子、つまり振動冷却を観測することに成功した。これは他のイオン蓄積装置では実現していない、3 原子分子イオンとしては初めての観測例である。理論計算では、励起状態分布においては実験と一致する結果が得られたが、基底状態分布においては相違が確認された。励起状態は対称伸縮モード間の冷却が主であるが、基底状態は複雑なエネルギー構造を持つ変角モードから脱励起が加わるためであると考えられる。本研究により、3 原子分子特有の複数モードが関与する振動冷却過程を解明できた。

[References] [1] Y. Nakano et al., Rev. Sci. Instrum. 88, 33110 (2017).

超流動ヘリウム液滴中アニリンの光イオン化スペクトル (首都大院理[°],理研^b)〇井口有紗[°]・久間晋^b・田沼肇[°]・東俊行^b

Photoionization spectrum of aniline in superfluid helium droplets (Tokyo Metropolitan Univ.°, RIKEN^b) <u>Arisa Iguchi[°]</u>, Susumu Kuma^b, Hajime Tanuma[°], Toshiyuki Azuma^b

Superfluid helium nano-droplets at 0.4 K are produced by expanding high-pressure (> 1 MPa) helium gas from a cold (< 20 K) pulsed nozzle. Due to superfluidity, the interior of helium droplets has almost zero viscosity and extremely weak interactions. Moreover, the droplets can capture and isolate molecules easily, and can cool the internal energy of the captured molecules to the temperature of the droplets within micro seconds.

We chose aniline as a sample, because its photoionization and fluorescence spectra in the gas phase have been reported in detail. We first observed laser induced fluorescence of aniline in helium droplets. Next, we produced aniline cation clusters and aniline-He cation complexes by resonance enhanced multi-photon ionization in the droplets utilizing time-of-flight mass spectroscopy.

温度 20 K 以下に冷却したパルスノズルから高真空の空間にヘリウムガスを噴出すること で 0.4 Kの超流動ヘリウムナノ液滴を作ることができる. 超流動性によりヘリウム液滴内部 は粘性がゼロで相互作用が非常に弱く,内部へ分子を容易に捕捉・単離することができ,か つマイクロ秒以内の短時間で捕捉分子の内部エネルギーを液滴温度まで冷やすことが可能で ある. 我々はヘリウム液滴分光法を,これまでの中性分子でなく分子イオンの極低温分光媒 質として用いることを目的としている.

本実験では、光イオン化や蛍光観測が容易なアニリンをサンプル分子として用いた.まず 極低温ノズル[1]から生成したヘリウム液滴に中性アニリンを捕捉した後、アニリンのレーザ ー誘起蛍光(LIF)の測定を行った. OPO レーザーによる UV 励起により、波長 293 nm にお いて S₁←S₀励起のピークを確認し、LIF スペクトルからアニリンとヘリウム液滴との相互作 用に起因する phonon-wing を観測した.次に飛行時間質量分析法により、共鳴励起多光子 イオン化(REMPI)を用いてアニリンカチオンの生成を評価した.zero-phonon-line[2]の波

長 293.5 nm において, ノズル温度 13K の大きな液滴サイズ ($N > 10^6$)にて (aniline), カチオンクラスター(n > 10) の生成を確認した.また,液滴サイズを 最適化することで(aniline + He,)カチオ ン複合体(n > 60)を観測した.スペクト ル解析による考察や,さらなる実験結果 について議論する.

[1] S. Kuma and T. Azuma, *Cryogenics* **88**, 78 (2017).

[2] E. Loginov, D. Rossi, and M. Drabbels, *Phys. Rev. Lett.* **95**, 163401 (2005).

図 I. ヘリウム液滴の REMPI で生成した (aniline-He_n)⁺の飛行時間質量分析スペクトル

Pb0 分子の X(0⁺)→A(0⁺), B(1) 遷移の高分解能分光 (富山大理^{*}, 京都大院理^b) 〇鈴木雄大^{*}・白石聖^{*}・高畠涼汰^{*}・馬場正昭^b・榎本勝成^{*}

High resolution spectroscopy of X(0⁺)→A(0⁺), B(1) transition of Pb0 (Univ. of Toyama.^a, Kyoto Univ.^b) <u>Takehiro Suzuki</u>^a, Sei Shiraishi^a, Ryota Takabatake^a, Masaaki Baba^b, Katsunari Enomoto^a

We have performed high precision spectroscopy of lead oxide (PbO) molecule. The B(1) (v'=2, 5) and the $A(0^+) (v'=6-8)$ transition were investigated by using cold PbO molecules. These lines were measured by comparing with resonances of an ultralow expansion etalon.

Pb0 分子は電子の永久電気双極子モーメント測定[1]や、マイクロ波による運動制御の実 演に利用されている[2]。我々はこれまでに、ヘリウムバッファーガス冷却による低温低速 分子ビームを用いた高分解能分光の研究を行ってきた。原子の共鳴線によって較正された 超低膨張エタロン[3]の共鳴周波数と比較し、一酸化鉛(Pb0)分子のB(1)(v²=3-6)状態の高 分解能分光を10 MHz の絶対周波数精度で行った[4]。

本研究では実験装置をより分光目的に特化させ、より広い範囲について Pb0 の分光を行った。図1に実験の装置図を示す。セル内部の固体 Pb0 試料をパルスレーザーでアブレーションし Pb0 気体を生成する。その Pb0 気体を He バッファーガスと衝突させることで低温の Pb0 気体を作り出している。この Pb0 分子をプローブレーザーで励起し、蛍光を光電子 増倍管で観測している。以前の研究[4]では試料セル外部にビームとして取り出した分子を 観測していたが、今回はセルを密閉しセルの内部で観測することにした。これによりスペ クトル線幅は広がったが観測できる分子の数は多くなり、以前は測定できなかった遷移の 測定をすることが出来るようになった。

図1.実験装置の概略図

取得したスペクトルの例を図2に示す。 上のグラフがPb0の励起スペクトルで、 下のグラフがエタロンの透過信号を表して いる。エタロンの副目盛として電気光学素 子によるサイドバンドを用いている。この 分光システムを用いて液体窒素温度で $X(0^{+})(v^{-}=0)$ からB(1) $(v^{-}=5)$ 状態の21>Jへの 遷移の共鳴周波数を測定した。また報告例のな かったA(0⁺) $(v^{-}=6,7)$ 状態の遷移を測定した。そ して回転準位を $E = G + BJ'(J' + 1) - D\{J'(J' + 1)\}^{2}$ の式で表し、分光定数を決定した(表 1)。 講演ではさらに、B(1) $(v^{-}=2)$ とA(0⁺) $(v^{-}=8)$ 状態についての測定についても報告する予定 である。

図 2.²⁰⁷PbO の X(0⁺)(v^{*}=0)→A(0⁺)(v^{*}=7)R(2) の励起スペクトルとエタロンの透過信号

state	v	Isotope	$G(cm^{-1})$	$B(cm^{-1})$
- ()	_	206	24600. 89250 (9)	0.249609(3)
B(1)	5	207	24600. 48355 (10)	0. 249536 (5)
		208	24600. 08427 (9)	0.2494627(13)
		206	22366. 8361 (4)	0. 249123 (3)
A(0 ⁺)	6	207	22366. 4121 (4)	0. 249045 (4)
		208	22365. 9972 (4)	0.2489539(14)
	_	206	22801. 34197 (19)	0.24754(3)
A(0+)	7	207	22800. 84537 (18)	0. 247415 (17)
		208	22800. 3583 (3)	0. 24733 (4)

表 1.^{206,207,208}PbO の B(1)状態 v=5 と A(0+)状態 v=6,7 の分光定数

[1]S.Eckel et.al., Phys.Rev. A 87, 052130 (2013)

- [2]K.Enomoto et.al., J.Phys. B 52, 035101 (2019)
- [3]K. Enomoto et. al., Appl. Phys. B 122, 126 (2016)

[4]K. Enomoto et al., J. Mol. Spectrosc, **339**, 12 (2017)

ボゾン対とフェルミオン対の系としての № 分子³ Σ 状態の研究 (東エ大・理) O宮下恭子・金森英人

Research of the ³Σ state of N₂ molecule considering as boson pair and fermion pair system using NIR sub-Doppler spectroscopy (Department of physics, Tokyo Institute of Technology) <u>Kyoko Miyashita</u>, Hideto Kanamori

The ${}^{3}\Sigma$ state of ${}^{14}N_{2}$ molecule is the simplest quantum system in which an equivalent boson pair and fermion pair interact electromagnetically. It would be an interesting and unique research subject because the quantization axis is not a priori determined in the rotating quantum number is zero. Focusing on this point, the purpose of this research is to clarify the interaction of the fine and hyperfine structure of this system. So we tried sub-Doppler spectroscopy for the $D^{3}\Sigma_{u}^{+}(v=0)-E^{3}\Sigma_{g}^{+}(v=0)$ transition of N₂ molecule to observe hyperfine resolved spectrum which has never been reported.

【序】¹⁴N₂分子の ³Σ 状態は、核スピン角運動量 *I*=1 の等価なボーズ粒子の対と、フェルミ粒子である電子の対が全電子スピン角運動量 *S*=1 として電磁気相互作用する最もシンプルな量子系とみなすことができる。このモデルにおいて特に量子化軸が先験されない回転量子数が*N*=0 の状態での等価なボゾン対とフェルミオン対の相互作用は興味深い研究対象である。本研究では、高分解能分子分光法を用いて、核スピンと電子スピンに起因する微細及び超微細構造分裂を測定し、その相互作用を新たな視点から見直すことを目的としている。今回観測対象とする N₂分子の D³Σ_u⁺(v=0)-E³Σ_g⁺(v=0)遷移では、微細相互作用は既に観測されているが、超微細相互作用については D,E 状態のいずれについても報告されていない。今回はこの遷移の超微細構造を観測するために、近赤外半導体レーザーを用いた飽和吸収分光による Lambdip スペクトルの測定を行い、得られたスペクトル線について考察した。

【方法】N₂分子の D³ $\Sigma_{u}^{+}(v=0)$ -E³ $\Sigma_{g}^{+}(v=0)$ 遷移の Lamb-dip 測定のための光源としては 1.3 μ m 帯 で出力 5mW の ExceLight 社のファイバー付 DFB 半導体レーザーSLT4260-K515B を用いた。 Lamb-dip による信号のみを取り出すために、pump 光を 2.45kHz で chopper 変調し、probe 信 号を Lock-in amp を用いて位相敏感検出した。

 N_2 分子の $E^3\Sigma_g^+(v=0)$ 状態は、純度 99.999%の N_2 試料気体を放電プラズマとすることで生成 した。プラズマは内径 10mm、全長 44cm の放電電極付ガスセルに N_2 試料気体を全圧 100mTorr、 流量 2.0ccm とするフロー条件のもと、放電電圧 3kV、電流 150mA の直流放電で生成した。

【結果・考察】今回は下準位が最低回転状態となる、 $D^{3}\Sigma_{u}^{+}(v=0)-E^{3}\Sigma_{g}^{+}(v=0)$ の R(0)遷移の Lambdip スペクトルを観測することに成功した。このスペクトルを解釈するための微細及び超微細構造分裂を示すエネルギー準位図を Fig.1 と 2 に示す。全電子スピン角運動量 *S*=1 によって D 状態の *N*'=1 準位は 3 準位(*J*'=0,1,2)に分裂し、E 状態の *N*''=0 準位は単一準位(*J*''=1)となる。 R(0)遷移では Case b が成立していないので、Fig.1 の矢印が示すように ΔJ =+1,0,-1 の 3 本の遷移が可能となる。さらに R(0)では、D,E 状態はいずれも全核スピン角運動量 *I* が 0 または 2 を取ることから、Fig.2 の矢印が示すように ΔJ =+1 には 10 本、 ΔJ =0 には 8 本、 ΔJ =-1 には 4 本の ΔF =+1,0,-1 の超微細構造遷移を考慮する必要がある。

Fig.3 に示す実際に測定したスペクトルは、2.5Hz で周波数掃引してデジタルオシロスコープ

で 128 回積算したデータを 16 回取得し、その平均を取ったものである。微細構造の帰属は過 去の報告[1]をもとに特定した。その結果、 $\Delta J=+1$ は 1 本のまとまった強いピークが複数のピ ークに分離しかけている構造として、また $\Delta J=0$ は同程度の強度の複数のピークが連なった 構造として観測されたことから、超微細相互作用分裂パターンは $\Delta J=+1$ と 0 では大きく異な っていることが推察される。一方、 $\Delta J=-1$ は信号の強度が小さく、細かい構造の分離までは至 っていない。

超微細構造が完全に分離できなかった理由としては、データ積算中のレーザー周波数の揺ら ぎ等の実験上の問題の他に、D 状態の自然幅が考えられる。D 状態では、隣接する C³ Π_u 状態 との電子-回転相互作用に伴う前期解離が起こることが知られていて、実際に D³ Σ_u ⁺-E³ Σ_g ⁺遷移 において v=1 の状態ではスペクトル線幅が D 状態の回転量子数 N に依存して広がることが観 測されている[1]。v=0 状態の前期解離による自然幅を確認するために、単一超微細構造を持 つ R(1)の J'=1 \leftarrow J''=0, F'=2 \leftarrow F''=1 の遷移を測定した結果(Fig.4)、FWHM が 83.7±0.6MHz であ った。前期解離によるスペクトル線幅が N'に比例すると仮定すると R(0)での1本の超微細構 造の線幅は半分の 42MHz 程度と推定される。観測されたスペクトルでも、それに対応するピ ークが分離しかけているようにも見えるが、重なる本数が多いので1本1本完全に分離する のは困難な状況となっている。

以上を踏まえた今後の展望として、まずは D 状態の前期解離の影響が最も小さい P(1)のスペクトルの構造を確かめることが必要である。また、前期解離の影響によるスペクトル線幅の影響を受けない観測を行うために、R(0)と P(2)を使った A 型の二重共鳴分光法を導入することを計画している。

[1] H.Kanamori, S.Takashima, and K.Sakurai, J. Chem. Phys. 95 (1) (1991)

赤外レーザー分光によるパラ水素結晶中の弾性波歪みの 検出に向けた超音波共振器の開発 (東工大院理[®]) 〇三枝良輔[®]・金森英人[®]

Development of acoustic resonator for detection of elastic wave distortions in the para-H2 crystal by IR spectroscopy (Tokyo Tech.^a) <u>Ryosuke Saigusa^a</u>, Hideto Kanamori^a

In order to clarify the origin of the phenomenon caused by the local distortion in the spectroscopy in the para- H_2 crystal, we developed acoustic resonator which artificially produces the distortion using the elastic wave. In this report, we conducted a simulation experiment using water instead of para- H_2 and established a method for measuring the spatial intensity distribution of elastic waves using a laser.

[序論]

分子性結晶であるパラ水素結晶は量子固体の代表であり、結晶格子の隣り合う水素分子はト ンネル効果により空間的に交換可能と考えられている[1]。パラ水素結晶の分光では結晶に残 留するオルト水素やドープされた分子による格子欠陥などの局所的な歪みによって特異な情 報が得られるが、その起源は十分には解明されていない。そこで本研究は、結晶に弾性波を 導入することで、人工的に制御した結晶内の歪みを高分解能分光の手法を用いて検出するこ とで、パラ水素結晶の歪み応答に関する知見を得ることを目標とする研究を進めている。

その第一段階として、パラ水素結晶に弾性波を導入するための高い共振特性を持つ共振器の開発が必要となるが、パラ水素結晶は数 K オーダーの低温で生成されるため開発実験が容易でない。そこでパラ水素結晶の代わりに水を用いた室温でのシミュレーション実験を行った。また、共振器内部の弾性定在波の空間強度分布をモニターすることが必要となるが、そのために行ったレーザーブリルアン散乱の実験結果についても報告する。

[実験]

① <u>共振器</u>

図1のような直方体の光学セル(1cm×1cm×6cm)の端面に円盤 型のピエゾ素子(共振周波数 9.7MHz)を弾性波の発振器として 取り付けることで弾性定在波を水中に発生させた。発振器の向 かい側に同じピエゾ素子を受信機として取り付けることで弾 性波を検出し、発振器の周波数を掃引することで共振器の共振 特性を測定した。

② <u>ブリルアン散乱</u>

この共振器で、弾性波の進行方向に対して垂直な方向から He-Ne レーザーを透過させると、ブリルアン散乱によってレーザー の周波数から弾性波の周波数分だけシフトした散乱光成分が 発生する。レイリー散乱成分とブリルアン散乱成分のビート信 号を検出することで弾性波の空間強度分布を測定した。また、

図 1:作成した弾性波共 振器

弾性定在波が導入された水中に粒子径が 数μmのカーボランダムを投入し定在波 の節に補足することで、定在波の可視化 を試みた。

[mV]

[結果と考察]

① <u>共振器</u>

図 2 に弾性波の共振特性を示した。 9.6MHz のピークは Q 値が 500 程の高い共 振特性をもつことがわかった。FSR は 50KHz から 90KHz の間を連続的に変化し た。FSR の理論値は共振器長 1cm、音速 1500m/s とすると 75kHz であり実験と誤差が 生じる。この誤差は測定時間内の温度変化に起因 する速度変化で説明できると判断した。

② <u>ブリルアン散乱</u>

図3に弾性波の空間強度分布を示した。横軸は 弾性波の進行方向を示す。空間強度分布は79um の周期を持つ関数でこれは周波数9.7MHzの弾性 波の半波長と一致する。この実験から、将来のパ ラ水素結晶における実験で、ブリルアン散乱現象 を用いて弾性波の空間強度分布を測定すること が可能になると期待される。

弾性定在波の存在がブリルアン散乱によって確か められたが、続けて私たちはこの弾性定在波を可視 化することを試みた。図4に共振器中にカーボラン ダムを投入し顕微鏡で覗いた様子を示した。赤い光 はHe-Ne レーザーで、矢印は弾性波の進行方向を示 している。カーボランダムが弾性定在波の節に捕捉 され、縞状に配列したことで弾性定在波を可視化す ることができた。パラ水素結晶での実験では、弾性 定在波によって残留するオルト水素分子を配列さ せることが可能になると期待される。

今回の結果から、液体を媒質にした高い共振特性 を持つ共振器の作成と媒質中の弾性波強度分布の モニター手法を確立することができた。今後の研究 では媒質を液体から固体に代えて同様の実験が行 えるかどうかが課題になる。

図 4:カーボランダムを投入した共 振器内の様子

参考文献

[1] C. M. Lindsay, T. Oka and T. Momose, J. Mol. Spectrosc. 218, 131-133 (2003)

L18 2 台の赤外レーザーを用いたパラ水素結晶中における CH₃F 誘起による水 素 Q₁(0) ピーク群の解析 (東エ大院理[®]) O中井川晃[®]・金森英人[®]

Analysis of hydrogen Q₁(O) peaks induced by CH₃F in *para*-hydrogen crystal using two IR lasers (Tokyo Tech.^a) Akira Nakaigawa^a, Hideto Kanamori^b

We studied hydrogen $Q_1(0)$ peaks induced by CH₃F in *para*-hydrogen crystal. Some of these peaks have been found in our previous studies to originate from the same CH₃F-(*ortho*-H₂)_n cluster. This time, we confirmed the change in the splitting of the *para*-hydrogen peak due to the *ortho-para* conversion of CH₃F.

[序論] パラ水素結晶は六方最密充填構造をとることが知られて おり、この中にごく少数の CH₃F をドープした場合、その 12 個の 最近接サイトには n 個のオルト水素と(12-n)個のパラ水が配置す ると考えられるので、これを CH₃F-(*ortho*-H₂)_nクラスターと呼ん でいる。(Fig.1 参照)

CH₃F-(*ortho*H₂)_nクラスターの CH₃F:v₃バンド(C-F 振動)とパラ 水素の振動遷移(Q₁(0))については、FTIR を用いた研究[1] によっ て複数のピークが存在することが知られている。我々はこれまで にパラ水素の Q₁(0)ピーク群について CH₃F-(*ortho*H₂)_nクラスタ ーに含まれるオルト水素の数 *n* によってピークが分裂することを 確認している。

一方で同じオルト水素の数を持つ CH₃F-(*ortho*H₂) $_n$ クラスターから複数 の Q₁(0)ピークが生じていることも確認 しており、この分裂については不明な点 が多く残されている。

そこで我々はこの同じクラスターから 生じる複数のピークの起源を明らかにす るための実験的研究を行った。

[実験] 測定に用いる結晶は para-H2 ガス(残留 ortho-H2: ~ 1000ppm)に CH3F を20 ppm もしくは 40ppm 混入したものを、2 K に冷却した基板上に吹き付け、その後7 K でアニーリングして生成した。測定には二種類の IR レーザーを用いた。一つは para-H2:Q1(0)モニター用の 2.4µm 帯の DFB レーザー (TOPTICA、DL 100 DFB) である。もう一つは CH3F:v3バンド用の 9µm 帯の量子カスケードレーザー(Hamamatsu QCL)を減衰器に通して用

Figure 1 n個のオルト水素 (白丸)と(12-n)個のパラ水素 からなる CH₃F-(*ortho*-H₂)_n クラスター(図は n=2))

Figure 2時間経過による CH3F:v₃バンドの *n*=1ピー クの変化。結晶作成後 1.3 時間後((a)上)と 5 時間後((a) 下)のピーク。その変化量(b)を求めると主に三本のピー クに分割される。(c)は三本のピークでフィッティング した際の残差。

いた。この二台のレーザーを直交する直線 偏光の条件にし、グリッド偏光子を用いて 同軸に重ね、サンプル結晶を通過した後、 再び偏光子を用いて分離し、さらにバンド パスフィルターを使って、それぞれを別の 検出器で検出した。

[結果と考察] 一種類の $CH_3F \cdot (ortho H_2)_n$ クラスターから生じる CH_3F のピークの 強度が増減した際に、パラ水素の複数のピ ークが増減する理由の一つとして CH_3F のオルト-パラ依存性が考えられる。 ortho CH_3F と para CH_3F では基底状態 の回転量子数がそれぞれ J=0, J=1 である ため、低温なパラ水素結晶中にあっても異 なる状態をとる。そのため ortho CH_3F と para CH_3F ではパラ水素との相互作用が

Figure 3時間経過による CH₃F 誘起による水素 Q₁(0)ピーク群の変化。結晶作成から 1.1 時間後 (上段)と5時間後(中段)とその差(下段)。

異なり、パラ水素に異なるエネルギーの振動遷移を作り出す、という仕組みである。

これを検証するために我々は低温のパラ水素結晶中では para-CH₃F が ortho-CH₃F に変換され るということに注目した。これを利用すれば結晶作成直後のスペクトルと結晶作成から時間がた ったときのスペクトルを比較することで ortho-CH₃F と para-CH₃F がパラ水素のスペクトルに与 える影響の違いを知ることができる。

その結果が Fig.2, Fig.3 である。Fig.2 は CH₃F のスペクトルであり、時間経過によるピーク の変化量を表している(b)を見ると変化量は三本のピークに分割される。一番波数の小さいピーク が *para*-CH₃F 由来、中央が *ortho*-CH₃F 由来、一番波数が大きいピークについては詳細がわかっ ていないが時間経過により減少することが先行研究[2][3]で確認されおり、本実験でも同様に確認 された。一方でパラ水素のスペクトルについても Fig.3 に示したように時間経過によって一部の ピークが減少し一部のピークが増加することが確認された。これらのピークの減少速度を CH₃F のピークの減少速度と比較することでパラ水素のピークの一部について *para*-CH₃F 由来である ことや、CH₃F の先行研究で未帰属とされていたピークと同じ由来を持っていることが確認され た。

その一方で *ortho*-CH₃F 由来と考えられるパラ水素のピークが同じ CH₃F-(*ortho*-H₂)_nクラスターから複数発生していることも確認され、パラ水素のピークが複数に分裂している理由については CH₃F のオルトーパラ依存以外にも理由があることがわかりその理由について検討中である。

<参考文献>

[1]K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119, 4731 (2003)

[2]A. R. W. McKellar, Asao Mizoguchi, and Hideto Kanamori, J. Chem. Phys. **135**, 124511 (2011)

[3] Hiroyuki Kawasaki, Asao Mizoguchi, and Hideto Kanamori, J. Mol. Spec. 310, 39 (2015)

S₂³⁵Cl³⁷Cl と S₂³⁵Cl₂の高精度マイクロ波分光で得られた超微細構造定数と オルト-パラ対称性 (東工大院理[®],国立台湾交通大[®])○原奈緒子[®]・金森英人[®]・遠藤泰樹[®]

Study of *ortho-para* symmetry through the comparison of hyperfine constants of $S_2^{35}Cl^{37}Cl$ and $S_2^{35}Cl_2$ by microwave spectroscopy

(Department of Physics, Tokyo Institute of Technology, Japan^a, Department of Chemistry, National Chiao Tung University, Taiwan^b) Naoko Hara^a, Hideto Kanamori^a, Yasuki Endo^b

[Abstract] $S_2^{35}Cl_2$ has *ortho-para* symmetry based on permutation symmetry of identical particles. Previous studies have reported the existence of interactions between *o-p* states in molecules and the detection of optical transitions between *ortho* and *para* levels. On the other hand, $S_2^{35}Cl^{37}Cl$ doesn't have *o-p* symmetry. The purpose of this study is to investigate the difference depending on the existence of *o-p* symmetry between the effective Hamiltonian of these two molecules. The measurement of hyperfine splitting have advantage in the centimeter-wave band where the Doppler width is narrow and can be observed separately. Hyperfine structure splitting of low quantum states was measured using resonator type FTMW spectrometer combined supersonic jet at National Chiao Tung University. The nuclear quadrupole coupling constants χ and the nuclear spin-rotation coupling constant *C* were determined by analyzing spectrum. And then, the determined molecular constants of Cl nuclei of the two molecules were compared. It was shown with this experimental accuracy that there was no difference with or without *o-p* symmetry in the nuclear quadrupole coupling term H_Q from the comparison of χ and the nuclear spin-rotation coupling term H_Q from the comparison of χ and the nuclear spin-rotation of *C*.

【序】S2³⁵Cl₂分子には等価粒子の交換対称性に基づいたオルト・パラ(*o*-*p*)対称性がある。先行 研究では分子内の*o*-*p* 状態間相互作用の存在[1]、及び*o*-*p* 準位間光学遷移の検出[2]が報告さ れている。一方で、その同位体である S2³⁵Cl³⁷Cl 分子は*o*-*p* 対称性を持たない。そこでこの 2つの分子の実効的ハミルトニアンにおいて、*o*-*p* 対称性の有無による相違点を探ることを 目的とした。核四重極相互作用項 *Hq*の非対角項が*o*-*p* 状態間相互作用に関係するため、*o*-*p* 対称性の有無による相違点が出る項として核四重極相互作用項(超微細構造項)が挙げられ る。そのため、超微細構造分裂の高精度マイクロ波分光を行い、核四重極相互作用定数を決 定することとした。

【実験・結果】超微細構造分裂の測定は、ドップラー幅が狭く1本1本分かれて観測できる センチ波帯域が有利である。国立台湾交通大学の超音速ジェットを用いた cm 波帯の共振器 型 FTMW 分光器を用いて、回転状態が比較的低い純回転遷移について、超微細構造分裂した スペクトルを測定した。632本(回転量子数 $J=2\sim10, Ka=0\sim4$)のピークについて、量子数 の帰属を行い、最小二乗法を用いて実効的ハミルトニアンを決定した。(測定値-計算値)の 標準偏差は0.4kHz とすることができ、超微細構造項としては、核四重極相互作用項 H_Q の定 数 χ 、核スピン回転相互作用項 H_{NSR} の定数 Cを決定した。結果は表1に示す。

【解析・考察】今回決定した分子定数と S₂³⁵Cl₂の分子定数[4]を比較して、2つの分子の Hamiltonian についての議論を行う。2つの分子では慣性主軸が異なるため、 χ を対角化し

Cl-S 結合軸を z 軸とする(x-y-z)直交座標系に 変換して比較を行う。

まず2つの分子の35Cl核の核四重極相互 作用定数 χ_{ii} (*i=x,y,z*) を比較した結果を図 1に示す。 χ_{ii} は核四重極モーメント Qと 電場勾配テンソル q_{ii} を用いて $q_{ii} = \chi_{ii}/eQ$ と表されるため qiiの比として表している。 qiiの比は誤差範囲で1なので、有意な差は ない。すなわち、核四重極相互作用項 Hqに おいて測定精度を超える o-p 対称性の有無 による相違は検出されなかった。次に ³⁵Cl 核 と³⁷Cl核の *xii*を比較した結果を図2に 示す。35Cl核と37Cl核では核四重極モーメ ント Q が異なるため、原子での値の比: Q⁽³⁵⁾/Q⁽³⁷⁾=1.2686(4) [3]を用いて規格化 している。その結果 χ iiの比は誤差範囲で 1となり、この場合測定精度を超える op 対称性の有無による相違は検出されな かった。核スピン回転相互作用について は、解析で決定できた2つの分子の35Cl 核の対角項について比較した結果を図 3 に示す。核スピン回転相互作用定数 Cは 核の g 因子 g1 と回転定数 Bi を用いて $C_{ii}=g_{I}B_{i}R_{ii}$ (*i=a,b,c*) と表されるため、 R_{ii} の比として表している。その結果、誤差 範囲で1を越えることはなかったので、 核スピン回転相互作用項 HNSR について も o-p 対称性の有無による相違は検出さ れなかった。

【参考文献】[1] A.Mizoguchi, S.Ota, H.Kanamori, Y.Sumiyoshi, and Y.Endo, J.Mol.Spectrosc.,250,86(2008) [2]H.Kanamori, Z.T.Dehghani, A.Mizoguchi, Y.Endo, Phys.Lett.Rev. 119,173401 (2017) [3]Atomic Data and Nuclear Data Tables 111–112 1-28 (2016). [4]金森英人,遠藤泰樹,分子科学討論会 (名大,2019)

表 1 今回決定した超微細構造定数

	S ₂ ³⁵ Cl ³⁷ Cl			
	³⁵ Cl(1)	Ref[1]	³⁷ Cl(2)	Ref[1]
Xaa	-7.1679(8)	-7.176(5)	-7.2032(8)	-7.196(5)
$\chi_{aa} * K^2$	0.75(22)	-	0.62(22)	-
$\chi_{aa} * J^2$	-0.14(2)	-	-0.09(2)	-
Хьь	-16.389(1)	-16.379(6)	-11.874(1)	-11.874(7)
Xcc	23.557(1)	23.555(6)	19.077(1)	19.070(7)
$(\chi_{bb}-\chi_{cc})*J^2$	0.12(2)	-	0.088(17)	=
Xab	-48.98(3)	-48.0(6)	38.87(3)	39.3(5)
Xbc	-22.19(8)	-23.8(11)	-17.58(8)	-15.0(10)
Xac	-30.63(2)	-30.69(16)	23.52(2)	23.68(11)
Caa	1.08(5)	0.8(2)	0.81(5)	0.8(2)
C _{bb}	0.43(2)	H I	0.36(2)	
C _{cc}	0.41(2)	-	0.34(2)	÷
			σ _{fit} =	0.398[kHz]
x 1.004	у	Ζ		
1.002 I	T			
1	•			
0.998		$\frac{1}{4} \frac{q_{ii}}{q_{ii}}$	$(^{35}Cl in S_2)$ $(^{5}Cl in S_2)^3$	³⁵ Cl ₂) ⁵ Cl ³⁷ Cl)

図 1 2つの分子の³⁵Cl核の Xiiの比較

L20

Si2⁻負イオンの振電子相互作用を伴う遅延電子脱離過程 (首都大理^a・理研^b・東邦大理^c・イェーテボリ大^d・天津大^c) O飯田進平^a, 久間晋^b, 松本淳^a, 古川武^c, 田沼肇^a, 城丸春夫^a, 東俊行^b, V. Zhaunerchyk^d, K. Hansen^{d, c}

Slow electron detachment process via weak vibronic coupling for Si2⁻ (Tokyo Metropolitan Univ.^a, RIKEN^b, Toho Univ.^c, Gothenburg Univ.^d, Tianjin Univ^e) S. Iida^a, S. Kuma^b, J. Matsumoto^a, T. Furukawa^c, H. Tanuma^a, H. Shiromaru^a, T. Azuma^b, V. Zhaunerchyk^d, and K. Hansen^{d, e}

Slow electron detachment of Si_2^- on the 10 µs time scale was observed using an electrostatic ion storage ring. We observed the detachment spectra whose well-resolved peak structure was assigned to ro-vibrational transitions of the anion. According to this result, the slow electron detachment process is explained by the contributions of three transitions. First, Si_2^- in the X ${}^2\Sigma^+{}_g$ is excited to the B ${}^2\Sigma^+{}_u$ state by laser absorption, and then it is shifted to the A ${}^2\Pi_u$ state via weak coupling of electronic and nuclear motions. Finally, Si_2^- in the A ${}^2\Pi_u$ state is neutralized by vibrational auto detachment and thus detected as a slow electron detachment process.

光子を吸収した分子は電子脱励起によるけい光放出で急速に冷却されるか、内部転換により その電子的エネルギーを振動エネルギーへと再分配する。また内部転換後に再び電子的エネ ルギーへと分配する過程も存在するため、多原子分子負イオンにおいて直接電子脱離よりも 時間的に遅い遅延電子脱離過程がこれまで報告されている。一方で、2 原子分子はその状態 数の少なさから電子励起状態と振動励起状態の振電カップリングによる内部転換が起こりづ らいため、これまで遅延電子脱離過程は起きないと考えられており報告もなされていない。

本研究では静電型イオン蓄積リング(TMU E-ring)を用いて、リング状に周回している Si₂⁻ にレーザー光を照射し、光電子脱離により中性化した Si₂をリングの半周ごとに置かれた 2 つ の検出器を用いて検出した。

イオン蓄積リングにより等核 2 原子分子である Si₂⁻の速い電子脱離と遅延電子脱離を時間 的に分離し、10 μs オーダーの遅延電子脱離過程の観測に成功した。さらに波長可変 OPO レ ーザーを用いて励起波長を掃引することで Si₂⁻の振動・回転励起スペクトルを測定した。

右図に測定した Si₂⁻の振動回転励起スペク トルを示す。Si₂⁻は基底状態である X²Σ⁺_g状 態のわずか 200 cm⁻¹上に A²Π_u状態が存在し ており、この A²Π_u状態から中性基底状態の ³Σ⁻_g へは許容遷移である。このため、励起直 後に観測された Prompt は A²Π_u → ³Σ_gの遷移 による速い電子脱離過程である。一方で、半 周後に観測した Delayed は X²Σ⁺_g → B²Σ⁺_uか ら振電相互作用を経て中性 Si₂ へ遷移した遅 延電子脱離過程である。この結果から、中間 状態として A²Π_uが関与する Si₂⁻の遅延電子 脱離過程の機構を明らかにした。

Excitation wavenumber (cm⁻¹)

メタノール分子のマイクロ波ゼーマン効果 Ⅳ

(富山大理^a,国立天文台/総研大^b)〇高木光司郎^a・常川省三^a・小林かおり^a・

廣田朋也^b·

Microwave Zeeman Effect of Methanol IV

(Univ.of Toyama^a, NAOJ/SOKENDAI^b) K. Takagi^a, S. Tsunekawa^a, K. Kobayashi^a,

T. Hirota^b

We have already observed microwave Zeeman effect of CH₃OH with uncertainties of about 5% and determined four diagonal elements of rotational *g* tensor including the effect of internal rotation of the methyl group [1,2,3]. Now we have started the study of Zeeman effect of CH₃OD and observed σ - and π - component patterns of several low *J*,*K* transitions at a magnetic field of 7.5 kG.

CH₃OH から CH₃OD へ 今までに本タイトル I, II, II [1,2,3] として CH₃OH 分のマイクロ 波ゼーマン効果を扱ってきたが、これで一区切りをつける。今回からは、CH₃OD を扱う。こ の分子の星間メーザーは観測されていないが、回転スペクトルに大きな内部回転効果のある 分子として CH₃OH との比較で興味のある分子である。

まず、今までのことを簡単にまとめると、現在までにメタノールの星間メーザーのゼーマン効果はいくつかの遷移で観測されている[4,5,6,7]。星間雲中での磁場の値を決定するためにはこの分子の回転遷移に対する g 因子が必要であるが、今までは preliminary なものしかなかった[8]。我々は、主としてミリ波帯でのゼーマン効果の測定に基き、回転 g 因子テンソルの対角成分を決定した。これにより CH₃OH 分子の種々の回転遷移に対して 5% の精度で g 因子を決定できるようになった。

今までの理論的な部分をまとめると、Z 方向の磁場 B のもとで、ある回転順位のゼーマン分裂はその順位の g 因子を $g_{J\tau}$ として $\Delta W = -g_{J\tau}\mu_n P_z B$ (1) で与えられる。ここで μ_n は核磁子で $\mu_n/h = 0.76226$ MHz / kG である。ある遷移 2~1

で与えられる。ここで μ_n は核磁子で $\mu_n/h = 0.76226$ MHz/kG である。ある遷移 2←1 の Zeeman 効果は、 $P_z = M$ として $\Delta v = -(g_{J2}M_2 - g_{J1}M_1)(\mu_n/h)B$ (2)

であり、 $g_{l\tau}$ は、Internal Axis Method (IAM)の座標系をとり

$$g_{J\tau} = \frac{1}{J(J+1)} \Big[g_{aa} \langle P_a^2 \rangle + g_{bb} \langle P_b^2 \rangle + g_{cc} \langle P_c^2 \rangle + g_x \langle P_a p' \rangle + g_{ab} \langle P_a P_b \rangle + g_{ba} \langle P_b P_a \rangle \Big]$$
(3)
$$a, b, c: \text{ Instant, } p': \text{ Primatical States}$$

で与えられるとした[2]。右辺第4項が内部回転からの寄与を表している。ここで $p'=p_{\alpha}-\rho P_{a}$ (4)

で、 p_{α} はメチル基の角運動量の a 軸成分で、これは"internal rotation axes" 座標系[9]では p'となり、相対運動としての内部回転の角運動量を表す(定数 ρ は $\rho = I_{\alpha}/I_{aa}$)。メタノールの ゼーマン効果 I,IIまでは、内部回転座標の a 軸とメチル基の対称軸が一致しているという近似的 取り扱いを行い、gテンソルの非対角成分 g_{ab} (および g_{ba})は無視し、この近似の妥当性はIIIで検 討し確認した。しかし CH₃OD ではこの近似が成り立たないことが予想されるので、以後の 解析では g_{Ir} として Eq.(3)を用いる。

実験的な面では、磁場装置に改良を加えた。基本的には I で述べたものと類似したもので あるが一対の長さ 150mmの磁石(ネオジム社製)を 7.4mmの間隔で向かい合わせ、長さ方 向にもう一対加えて長さ 300mmとしたもので、この間の磁場の強さは約 7.5 kG である。一 様性は約 1.7%である。磁場の強さは毎回の実験時に H₂CO の 1₀₁-0₀₀ または 2₁₂-1₁₁線のゼ ーマン効果を測定し較正する。以前(I,II)より磁場が強くなり一様性も増した。 **CH₃OD のゼーマン効果の測定** 磁場:約7.5 kG、温度:ドライアイス温度で、low *J*, *K* 遷移(捩れ振動の v = 0 のみ) [10,11] を選び、そのゼーマン効果の σ -パターン(Δ M = ±1) 及び π -パターン(Δ M = 0)を観測し、ゼーマン分裂を測定した(Table 1)。分裂 s は最も外側のゼーマン成分間の間隔で磁場 7.0 kG に換算した値を示した(CH₃OH の s と比較 [1,2]のため)。

	A/E	Transition	Freq (MHz)	$ \Delta \mathbf{M} $	pattern	s (MHz) ^a
L1	А	1_{01} - 0_{00}	45359.07	1	doublet	0.486 (0.04)
L2	Е	$1_0 - 0_0$	45344.23	1	doublet	0.482 (0.04)
L3	А	$1_{11} - 0_{00}$	177924.44	1	doublet	1.16 (0.04)
L4	Е	$1 \cdot 1 - 0_0$	64302.09	1	doublet	1.33 (0.03)
L5	Е	$1_1 - 0_0$	155533.09	1	doublet	1.40 (0.03)
L6	А	$1_{10} - 1_{01}$	133924.44	0	doublet	1.48 (0.04)
L7	А	$2_{12} - 1_{11}$	89355.12	0	triplet	1.14 (0.05)
L8	А	$2_{11} - 1_{10}$	92075.59	0	triplet	1.09 (0.05)
L9	А	$3_{22} - 2_{21}$	136055.26	0	quintet	2.09 (0.02)
L10	Α	$3_{21} - 2_{20}$	136102.22	0	quintet	2.10 (0.02)

Table 1. Observed Zeeman pattern and splitting s at 7.0 kG

Table1 の遷移 L3 と L9 の磁場 7.5 kG で観測したゼーマン効果のシグナルを示す。

Fig.1. The σ -component pattern of A1₁₁ -0₀₀ (L3 in Table 1) at 7.5 kG.

The components a and b are for $M = \pm 1$ of A $1_{11} - M = 0$ of 0_{00} .

Fig.2. The π -component pattern of A 3₂₂ - 2₂₁ (L9 in Table 1) at 7.5 kG.

The components a,b,c,d and e are for M = -2,-1,0,1 and 2, respectively.

Table 1 のゼーマン分裂 s を Eq.(3) に従って解析したが、良い精度で $g_x \ge g_{ab}$ (および g_{ba})を決められなかった。これらの定数を決めるためには、ねじれ振動の励起状態($v \ge 1$)の遷移のゼーマン効果を観測することが必要であり、今後の課題である。

References [1] 高木,常川,小林,廣田,松島, 分子分光研究会(2017). [2] 同著者、同研究会 (2018) [3] 同著者、同研究会 (2019) [4] W. H. T. Vlemmings, A&A. 484, 773 (2008). [5] A.P. Sarma & E.Momjian, ApJ, 730, L5 (2011). [6] W. H. T. Vlemmings et al., A&A. 529, A95(2011).
[7] E.Momjian & A.P.Sarma, ApJL, 834,168(2017). [8] C. K. Jen, Phys. Rev. 81, 197(1951).
[9] C.C.Lin & J.D.Swalen, Rev. Mod. Phys, 31,841 (1959). [10] K. Kaushick, K.Takagi.& C. Matsumura, J. Mol. Spectrosc.82,4142(1980). [11] T.Anderson et al. ApJS. 67, 135 (1988)

トロポロン¹³C-置換体のトンネル回転相互作用の考察 (九大院理・九大宇宙セ・台湾交通大) 〇田中桂一、原田賢介、遠藤泰樹 Tunneling-Rotation Interaction of ¹³C-Substituted Tropolone (Kyushu Univ., NCTU) ○Keiichi Tanaka, Kensuke Harada, Yasuki Endo

Abstract Tunneling-rotation spectrum of ¹³C-substitutes of Tropolone has been observed by **FTMW** spectroscopy to determine the tunneling splittings ΔE_{ij} for the 5 substitutes, C-21, C-37, C-46, and C-5, together with the differences in the zero point energy Δ_{ij} between the ¹³C-i and ¹³C-j substitutes.

The normal and C-5 species have an symmetric potential for the proton tunneling and the $C_{2v}(\mathbf{M})$ symmetry together with the tunneling-rotation interaction between the tunneling levels. The C-21, C-37, and C-46 pairs, however, have an asymmetric potential and the $C_s(\mathbf{M})$ symmetry. As the results, they have several extra tunneling-rotation interactions both within and between the tunneling pairs C-i and C-j which brought the analysis to the frequency accuracy of FTMW spectroscopy of about 1kHz.

【序論】トロポロンは7員環芳香族化合物で、 基底状態はH原子のトンネル効果によりトンネ ル副準位 (0⁺と 0⁻¹)に分裂する (ΔE_0 =0.97380 cm⁻¹) ¹⁾。

我々は、FTMW 分光実験を行いトロポロン¹³C 置換体のトンネル効果について昨年、報告した²⁾。 ¹³C 置換体の名前を図 1 のように定義する。C-1 およびC-2 置換体はトンネル運動により互いに変 換するが、基底状態 $(0^1, 0^2)$ の零点振動が異なるた め非対称なポテンシャルを持つ。零点エネルギー (ZE)の差 Δ_{21} は-1.372 cm⁻¹ である。C-3 と C-7 および C-4 と C-6 置換体間では ZE の差 Δ_{ij} はより 小さく(0.572, 0.140 cm⁻¹)、また C-5 置換体は対称 なポテンシャルを持つ。

その結果 Δ_{ij} の小さい C-46 の組は親分子とほ ぼ同じトンネル効果を示すが、 Δ_{ij} の大きな C-12 の 組ではトンネル運動が阻害されて異なる 2 つの構

図1¹³C-1と¹³C-2 置換体のポテンシャル

造異性体 (C-1 と C-2) に近くなる事が分かった。その境目は ZE の差 Δ_{ij} が親分子のトンネル分 裂幅 ΔE_0 程度の時である。また、C-37 の組はその中間的な場合に対応する。

対称なポテンシャル($C_{2\nu}$ -対称)を持つ親分子やC-5置換体では、トンネル副準位(0^{+} と0)間に 大きな相互作用, $H_{int} = F(J_aJ_b + J_bJ_a)$,が存在するが、これは慣性乗積 I_{ab} とトンネル回転運動に由 来するものである。 非対称なポテンシャルを持つC-46、C-37およびC-12の組では対称性が $C_{2\nu}(M)$ より $C_{S}(M)$ へ低下し、より複雑なトンネル回転相互作用を持つ。本研究ではトロポロン¹³C 置換体間の相互作用を解析して、トンネル回転運動の詳細を解明する事を目的とした。 【**解析・考察**】 親分子と C-5 置換体ではほぼ等しい 表1 相互作用定数,(*F*=16.456 と 15.879 MH z) が得られ、 多数の回転およびトンネ ル回転遷移が 0.6kHz 程の 残差で再現された。しかし 非対称性なポテンシャを 持つ C-12 などの解析では 数 MHz の大きな残差が残 った。これは C-5 以外では ¹³C の置換により対称性が

Interaction Constants for the C_c(M) Symmetry Species

(MHz)	C-46	C-37	C-12	(u/l)
F	15.9961(30)	14.3427(58)	8.876(33)	$J_{a}J_{b}+J_{b}J_{a} o$
D		-7.49(165)*		iJ _c o
A	1.82(24)	3.86(22)	5.21(47)	J _a ² off
F _u	2.23 (62)	5.65(54)		$J_{a}J_{b}+J_{b}J_{a}$ d
Du	—	0.684(148)*	12.02(153)*	iJ _c d
σ	0.55	1.28	0.88	*kHz

 $C_{2v}(M)$ から $C_{s}(M)$ に低下するためである。すなわち $C_{2}^{(a)}$ 回転軸周りの対称性の消滅により同等な核の交換性 (オルト-パラ)は保持されず、反転操作 E^* によるパリテイpのみが保存量となる。従って ΔK_{a} が奇数の準位間に新たな相互作用が許容となる。例えば、慣性乗積 $I_{ab}(q)$ はトンネル 座標 qの関数である。得られたトンネル回転相互作用定数 $F = \langle u|I_{ab}(q)| u \rangle$ は親分子の定数 F_{0} と $F = 2cs F_{0}$ の関係がある、ここでc,sはトンネル副準位の状態混合 $|u\rangle = cli + sj >, |l\rangle = sli > - cj >$ の係数である。一方 C-46 と C-37 の組では、トンネル準位内の対角項 $Fu = \langle u|I_{ab}(q)| u \rangle = (s^{2}-c^{2}) F_{0}$ が決まった (表 1)。両者は一定の関係にあるが、実測値はこの関係を良く満たす(図 2)。

慣性能率 $I_{aa}(q)$ の対角項は 回転定数 $A = <u/ll I_{aa}(q) |u/l> で$ あるが、その非対角項 <math>A = $<uI I_{aa}(q) |l> が Cs(M) 分子で有$ $意に決定された(表 1)。<math>AJ_a^2$ の項は 1 MHz 程の影響を与え る。また 1 次のコリオリ項 $iJ_c D$ (対角、非対角)が C-12 と C-37 の組で求められた (表 1)。こ れらにより実験精度 (1kHz)で 観測周波数を再現した。

状態の混合は零点エネルギ ーの差 **Δ**_{ij} の増加と共に減少 し **C-5** では半々であるが、

図2 相互作用定数 F(対角項)と Fu (非対角項)

C-46 (43, 57), C-37 (25, 75), C-21 (9, 91)と急速に減少する。²⁾ 混合が 中間的な C-37 の組では 5 つの相互作用定数が必要だが、混合割合が低下して構造異性体に近くなる C-21 ではより少ない (3 つの) 定数で十分であった。混合割合が零の時には二つの状態間に相互作用は存在しない。
 状態混合の更に少ない(5, 95)と予想される酸素原子の¹⁸O 置換体 O-89 (Δ₈₉=1.9cm⁻¹) の実験を進めている。

1) K. Tanaka, et al. J. Chem. Phys. 110, 1969 (1999). 2) K. Tanaka, et. al, 本会 L04 (2019).

(*o*)H₂-HCN の内部回転バンドのミリ波ジェット分光 (九州大院・理) ○原田 賢介・田中 桂一 Millimeterwave spectroscopy of the internal rotation bands of (*o*)H₂-HCN

(Kyushu University) OKensuke HARADA and Keiichi TANAKA

The *ortho-* and *para*-H₂–HCN complexes have different structures, H₂ is attached to the nitrogen and hydrogen end of HCN, respectively, for (*o*)- and (*p*)-H₂ complexes^[1, 2]. We have measured the *j*=1-0 internal rotation band of (*o*)H₂-HCN, where *j* is the quantum number for the HCN internal rotation. We assigned most of intense lines to the Σ_1 - Σ_0 and Π_1 - Σ_0 bands using the double resonance of the internal rotation transitions and the ground state rotational transitions, although only two lines, *R*(0) and *P*(2), were assigned to the Σ_1 - Σ_0 band^[3]. In the present study, we have extended measurement and assigned *R*(1) and

P(3) lines of the the Σ_1 - Σ_0 band, from which we have determined the rotational constant of the Σ_1 state.

[序論] H₂-HCN はH₂と HCN が弱く結合した分子錯体で、 H₂と HCN はそれぞれ内部回転をしている(図 1)。H₂は、 内部回転状態 j_{H2} により異なる核スピン I_{H2}を持ち、j_{H2} =0 では para-(I_{H2}=0), j_{H2}=1 では ortho-水素 (I_{H2}=0)である。従 って(o)H₂-HCN 錯体の基底状態 (j_{HCN}=0)^[1, 3]には, j_{H2}の分 子軸成分($k_{H_2} = 0,1$) により二つの準位、 Σ_0 ($k_{H_2} = 0$)と $\Pi_0(k_{H_2} = 1)$, が存在し、 Π_0 準位の方が Σ_0 準位より 40 cm⁻¹ 程高いエネルギーを持つ。 Σ_0 準位からは、HCN の内部回 転の励起状態(j_{HCN}=1, $k_{HCN}=0,1$)の副準位 $\Sigma_1,\Pi_1(k_{HCN}=0,1)$ への二つ内部回転遷移 $\Sigma_1-\Sigma_0$ 及び $\Pi_1-\Sigma_0$ が生じる(図 2)。

我々は、H₂-HCN の回転スペクトル[1, 2]を報告後、(*o*)H₂-HCN錯体のHCN内部回転遷移の帰属を進めてきた。

内部回転励起状態での純回転遷 移および、純回転-内部回転遷移の 二重共鳴効果の観測を行い、 Σ_1 - Σ_0 バンドの P(2), R(0)および Π_1 - Σ_0 バンドの P(2), Q(1), Q(2), R(0), R(1), R(2)遷移を帰属した[3]。 Σ_1 状態は、J=1準位の位置のみがわ かっており、回転定数は、決定で きていなかった。本研究では、光 源がなくこれまで未観測であっ た周波数領域を観測し、新たに、 Σ_1 - Σ_0 バンドの P(3)と R(1)を帰 属し、 Σ_1 状態の回転定数を決定

図 1. (o) H₂-HCN の内部回転

図 2. (o) H2-HCN の内部回転準位

したので報告する。

[実験] HCN, H₂, Ne (0.5, 25, 75%) の混合ガスをパルスノズルより真空槽内に噴射しH₂-HCN 錯体を生成した。回転温度は 3K 程である。ミリ波を White-型多重反射セルに入射し、超音速ジェット中を 10 往復させ観測した。岡山大、静岡大より光源を借りて、これまで未観測であった 218.5-231.5 GHz の領域を観測し、光源が弱く感度良い観測が行われていなかった 231.5-240 GHz 領域を再測定した。図3に紫矢印で今回観測した領域を示す。これを含めて、これまで 68-251 GHz の範囲(緑線の範囲)が連続に観測されている。

[結果と解析]

今回新たに掃引した領域のうち 226.1 GHz に非常に強い遷移が観測された(図4)。こ れまでの観測でもっとも強い $\Sigma_1 - \Sigma_0 R(0)$ 遷 移のさらに2倍の強度で観測された。この遷 移を $\Sigma_1 - \Sigma_0 R(1)$ と仮定すると、基底状態の J=2-1と 3-2 回転遷移の周波数より $\Sigma_1 - \Sigma_0$ P(3)遷移は 98.7 GHz に観測されるはずであ る。98.7 GHz にコンビネーションディファレ ンスが 200kHz 以内で一致する遷移が観測さ れたことにより $\Sigma_1 - \Sigma_0$ バンドのP(3)とR(1)の帰属が確定した(図3、青2重丸)。

 $\Sigma_1 - \Sigma_0$ バンドの P(2)と R(0)より Σ_1 の J=1 状態の位置が定まり、 $\Sigma_1 - \Sigma_0$ バンドの P(3)と R(1)より Σ_1 の J=2状態の位置が定まるので、 Σ_1 状態の回転定数が決定できる。

帰属されたすべての遷移周波数を最小自乗 法解析し、表1の分子定数を決定した。解析に はl-型2重項分裂を含む通常の回転のハミル トニアンを用い、 Σ_1 - Π_1 状態間のコリオリ相 互作用は解析に含めていない。

 Σ_1 状態の回転定数は、 Π_1 状態の回転定数よ り 14 % 小さい。これは重心間を結ぶクラスタ ー軸を含む面内で HCN が回転しているか、クラ スター軸の回りを HCN がプロペラのように回 転しているかによる重心間距離の違いを表し

表 1.

	(0)H ₂ -HCNの分子	·定数
$E_{\Sigma 1}$	190813.96(11)	MHz
$B_{\Sigma 1}$	10402.952(25)	MHz
$E_{\Pi 1}$	165582.164(78)	MHz
$B_{\Pi 1}$	12105.017(28)	MHz
$D_{\Pi 1}$	37.6678(21)	MHz
q	980.215(87)	MHz
q_J	-373.312(23)	MHz
σ	r= 132 kHz	

ていると考えられる。現在、 Σ_1 状態の遠心力歪定数の決定のため、 $\Sigma_1 - \Sigma_0$ バンドの R(2)遷移の 探索を進めている。

[謝辞] 岡山大より Gunn 発信器、静岡大より Klystron をお借りした。ご厚意に深く感謝する。 [1]M. Ishiguro, et al., J. Chem. Phys. 115, 5155 (2001).

[2]M. Ishiguro, et al., Chem. Phys. Lett. 554, 33 (2012).

[3]原田·田中, 分子分光研究会, L03 (2019).

メタン $2\nu_3 A_1 - \nu_3$ バンドの赤外赤外二重共鳴分光

(産総研[®],慶大理工^b)〇佐々田博之^{®,b}·大久保章[®]·稲場肇[®]·奥田祥子^b

IR-IR double resonance of the $2v_3 A_1 - v_3$ band of methane (AIST^a, Keio Univ.^b) <u>Hiroyuki Sasada^{a,b}</u>, Sho Okubo^a, Hajime Inaba^a, Shoko Okuda^b sasada@phys.keio.ac.jp

Abstract: We have carried out infrared-infrared double resonance spectroscopy of the $2v_3 A_1 - v_3$ band of methane. The v_3 band transitions are pumped using a 90.5-THz difference-frequency-generation (DFG) source frequency-controlled with an optical frequency comb, and ten tetrahedral components of the Q(1) to Q(4) transitions from the pumped levels are observed using another 88.4-THz DFG source with a sub-Doppler resolution. The transition frequencies are determined with an uncertainty of a few tens kilo-hertz using the OFC.

メタンの ν_3 振動モードは点群 Td の F_2 対称種に属し、基本バンドは赤外活性で、サブドッ プラー分解能分光と光周波数コム(OFC)により約 90 THz の遷移周波数が数 kHz の不確かさで 測定されている^{1,2}。一方、 $\nu_3 = 2$ 振動励起状態は E, F_2 , A_1 対称種に属する状態に分裂し、 E, A_1 状態は振動基底状態から電気双極子遷移が禁止されている。このため、 $\nu_3 = 1$ 振動励 起状態を経由した赤外赤外二重共鳴分光が行われたが、光源がパルスレーザーだったため分 解能は 4.5 GHz と低かった^{3,4}。

本研究では狭線幅の CW 光源を用いてメタンの 2 ν₃ A₁-ν₃バンドの赤外赤外二重共鳴分光 を行い、10 本の遷移周波数を数 10 kHz の不確かさで決定した。図 1 は実験装置を示す。波 長 1.5μmの外部共振器型半導体レーザー(ECLD)と波長 1.06μmの Nd:YAG レーザーからの 光は周期反転リチウムナイオベート(PPLN)内の差周波発生で 90.5 THz の中赤外光に変換さ

図1. 実験装置図。ECLD:外部共振器半導体レーザー、LD:狭線幅半導体レーザー、PPLN:周期 反転リチウムナイオベート、OFC:光周波数コム、FC:周波数カウンター、SG:信号発生器 $h \nu_3$ バンド遷移を励起する。一方、狭線幅半導体レーザー(LD)と Nd:YAG レーザーからの光 は 2 台目の PPLN 内で 88.4 THz の中赤外光となり、 ν_3 バンドの励起準位から 2 ν_3 A₁状態へ の遷移をプローブする。ECLD と Nd:YAG レーザーの発振周波数はそれぞれ繰り返し周波数が 約 100 MHz の OFC の最近接モードに位相同期して ν_3 バンド遷移の中心周波数¹に同調してい る。信号発生器(SG)からの 3.1 kHz の正弦波で ECLD の周波数を振幅 300 kHz で周波数変調 し、セルを透過したプローブ光を InSb 検出器で検出し lock-in amp. で位相敏感検波してい

る。吸収セルは長さ 50 cm、メタンの圧力 は 1.3 Pa で、励起光とプローブ光はセル 中で対向して重なっている。図 2 は $2\nu_3$ $A_1 - \nu_3 Q(3) F_1 遷移のスペクトルを示す。分$ 散形のスペクトルの幅は peak to peak で0.87 MHz である。この出力を LD の電源に

図 2. 観測された 2 ν₃ A₁- ν₃ Q(3) F₁ 遷移 の赤外赤外二重共鳴スペクトル

フィードバックしてプローブ光周波数を遷移周波数に安定化し、その時のLDとOFCの最近接 モードとのビート周波数をラジオ波周波数カウンター(FC)で測定する。ECLD, Nd:YAG レーザ ー、LDの波長は波長計で約30 MHzの不確かさで測定し、OFCのモードの次数差を決定する。

 $2\nu_3 A_1 - \nu_3$ バンドのQ(1)からQ(4)のテトラヘドラル分裂した10本の遷移を全て観測し、 遷移周波数を数10 kHz の不確かさで決定した。表1はその一部を示す。これらの遷移周波

表1 測定結果

励起遷移	励起遷移周波数 ¹	プローブ遷移	プローブ遷移周波数
	/ MHz		/ MHz
ν_{3} Q (3) F ₂	90 488 114.363 3	$2 \nu_{3} A_{1} - \nu_{3} Q (3) F_{1}$	88 460 336.07
$ u_{3}$ Q (4) A ₁	90 468 721.185 7	$2 \nu_{3} A_{1} - \nu_{3} Q(4) A_{2}$	88 507 067.09

数から $\nu_3 = 2 A_1 状態の分子定数を決定した。この状態の回転定数 B'が振動基底状態の B"より大きいことは文献 4 で既に指摘されていたが、このことが確認された。テトラヘドラル構造が分離して観測されたため、遠心力歪みのテンソル項の符号が振動基底状態と逆であることがはじめて明らかになった。$

赤外赤外二重共鳴分光法はサブドップラー分解能が容易に得られる。本研究は、これに光 周波数コムを組み合わせれば、一光子遷移で観測できない高振動励起状態の精密分光が可能 であることをはじめて示した。

参考文献

1) S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, Opt. Express, **19**, 23878 (2011).

2) M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B, **30**, 1027 (2013).

3) A. de Martino, R. Frey, and F. Pradere, Chem. Phys. Lett., **95**, 200 (1983).

4) A. de Martino, R. Frey, and F. Pradere, Chem. Phys. Lett., 100, 329 (1983).

ジメチルホスフィンの純回転遷移の観測 (上智大学[®],東京理科大学^b)〇小山貴裕^{a,b}・川嶋良章[®]・久世信彦[®]

Observation of the pure rotational spectra of dimethylphosphine (Sophia Univ.^a, Tokyo Univ. of Science^b) <u>Takahiro Oyama^{a,b}</u>, Yoshiyuki Kawashima^a, and Nobuhiko Kuze^a

Rotational spectra of dimethylphosphine and its ¹³C isotopomers have been observed using a Fourier transform microwave spectrometer. The species were produced in a supersonic jet by discharging trimethylphosphine diluted in Ar. The observed lines in the ground vibrational state are split into three, EA (AE), EE and AA, by the internal rotation of the methyl groups. The molecular constants including the centrifugal distortion constants have been precisely determined. Assignment of an unidentified line in the circumstellar envelope IRC+10216 is carried out using the determined molecular constants.

【序】リンは生物にとって必須の元素であり、例えば細胞膜を構成するリン脂質や、遺伝情報 を担うデオキシリボ核酸などに利用されている。ところがその宇宙における存在度は、同族 元素である窒素と比べて 1/300 しかない。生物が何故このような微量元素を構成要素として 選択したのかは、宇宙生物学の謎の一つである。その存在度の低さおよび難揮発な性質から、 星間空間で観測されたリンを含む化学種は、PN、PO、CP、C₂P、HCP、PH₃および NCCP の 7種だけであり、原子数が 5以上の大きな分子は検出されていない。アルマに代表される大 型電波望遠鏡の発展に伴い、これまで検出できなかったリンを含む極微量な化学種の検出も 今後可能になると予想される。しかし、リンを含む化学種の電波天文観測に必要な高精度な 分光学的データは現状では十分ではない。

ジメチルホスフィン P(CH₃)₂H (以下 DMP) は、リンを含む比較 的単純な化学種である(図 1)。その前駆体であるホスフィンが星 間空間で検出されていることから、星間空間に DMP が存在する可 能性は十分にあると考えられる。これまでにその回転定数[1]およ びメチル基の内部回転障壁の値[2]が報告されている。しかし、遠 心力歪み定数などは決定されておらず、天文観測に必要な高精度 な遷移周波数の予想はこれまで不可能だった。そこで本研究では、 将来的な電波天文観測のために、DMP およびその¹³C 一置換体の 純回転遷移の観測を行い、その分子定数の高精度決定を行った。

図1. ジメチルホスフィン

【実験】実験に先立ち、上智大学に設置されている超音速ジェットと組み合わせたフーリエ変換マイクロ波分光器に、自作の高電圧パルス放電装置およびパルス放電ノズル(PDN)を導入した。図2に今回作成した PDN の模式図を示す。放電部はステンレス製の電極、テフロン製

の電極フォルダおよび電極の間の絶縁体で構成される。パ ルスバルブが開いてから 500 μs 後に、電極間に2 kV の電 圧をかけることで、超音速ジェット中に DMP を生成した。 また、ラジカルの観測にも対応できるように、実験装置の 外周に東西、南北、上下方向に銅製のコイルを設置し、地 磁気を打ち消す方向に磁場を発生させた。その際、コイル に流す電流値は C4H のラインを用いて最適化した。試料ガ スには、トリメチルホスフィンおよびアセチレンをアルゴ ンで 0.3%まで希釈したものを用いた。

【結果・考察】先行研究で報告されている分子定数[1]を元 に、5-26 GHz の範囲で観測を行った。得られた DMP のス ペクトルを図 3 に示す。各遷移はメチル基の内部回転によ って AE(EA)、EE、AA の三つに分裂し、さらにそれぞれ がドップラーで二本に分裂したラインとして観測された。 b型および c 型遷移について、DMP で 32 本、¹³C 一置換体 で6本測定した。得られた測定周波数を XIAM[3]で解析し た。DMP の分子定数を表1に示す。ここで表中の δ と ε は、メチル基の内部回転軸に関して、a 軸に対する角度お よびその ab 平面への射影成分と b 軸との角度を表す。今 回、回転定数の精度が文献値[1]に比べて 3 桁向上し(表 2)、

遠心力歪み定数も決定できた。なお、文献1 では 25.8 GHz のラインを 220-211 と帰属して・ いたが、本解析では 321-312と帰属した。また、 報告されている幾つかの遷移周波数の値に 明らかな間違いがあった。メチル基の内部回 転障壁 V₃(cm⁻¹)の大きさを類似分子である トリメチルホスフィン P(CH₃)₃[4]およびモノ メチルホスフィン P(CH₃)H₂[5]と比較すると、 $P(CH_3)_3$ (802–1120) > $P(CH_3)_2H$ (804.81) > P(CH₃)H₂(685.2)となった。これはメチル基の 数が増えると共に立体障害が増大したため と考えられる。また、中心元素を窒素に置き 換えたジメチルアミンについて、アミノ基の 水素の反転によるラインの分裂が報告され ているが[6]、DMP では見られなかった。こ れは窒素とリン原子の化学的性質の違いを 反映しているものと考えられる。

決定された分子定数を元に星間空間で報 N(c-告されている未帰属ラインに DMP のライン <u>σ/kF</u> が無いか調査を行った。その結果、Ziurys ら ^{a Ref} が星周雲 IRC+10216 で報告した未同定ライン U112035[7]が DMP の 10₀₁₀-9₁₉遷移の予想周波数 112035.4 MHz と測定の誤差範囲内で一致した。た だし、分子の同定には最低 3 本のラインの一致が 必要である。このラインの近くには同程度の強度 で 10₁₁₀-90 9遷移(112431.7 MHz)および 10₁₉-928

図 3. P(CH₃)₂H のスペクトル

表1決定されたジメチルホスフィンの分子定数

	$P(CH_3)_2H$	P(13CH3)(CH3)H
A_0 /MHz	16071.85495(46)	15903.73356(86)
B_0 /MHz	7018.91177(85)	6830.70904(71)
C_0 /MHz	5402.90932(87)	5272.20788(45)
Δ_J/MHz	0.0069431(90)	0.009027(74)
Δ_{JK}/MHz	-0.030882(33)	-0.02184(30)
Δ_K/MHz	0.113290(28)	0.113290 ^b
δ_J/MHz	0.0023525(11)	0.00235251 ^b
δ_K/MHz	0.004285(23)	0.004285 ^b
Φ_J/Hz	0.224(92)	0.224 ^b
Φ_{JK}/Hz	1.62(46)	1.62 ^b
$V_3 / { m cm}^{-1}$	803.58(23)	803.60(21)
F_0 /MHz	158.9ª	158.9 ^a
δ /°	38.872(58)	38.872 ^b
	141.128(58)	141.128 ^b
<i>ɛ</i> /°	180(26)	180 ^b
N (b-type)	21	6
N (c-type)	11	0
σ/kHz	3.3	2.2

^a Ref. [1]. ^b Fixed.

表2分子定数の文献値との比較

	Present work	Previous works
A_0 /MHz	16071.85495(46)	16071.87 ^a
B_0 /MHz	7018.91177(85)	7018.19 ^a
C_0 /MHz	5402.90932(87)	5403.61 ^a
$V_3 /{ m cm}^{-1}$	803.58(23)	811.2(32) ^b

遷移(116553.5 MHz)が現れるはずであるが、残念 "Ref. [1]. ^bRef. [2].

ながらこの周波数領域でのラインサーベイは行われていない。発表当日は、同じサンプルから副次的に生成した他のリンを含む化学種の解析結果についても報告する予定である。

参考文献 [1] Nelson, J. Chem. Phys. **39**, 2382 (1963). [2] Durig et al., J. Chem. Phys. **67**, 2216 (1977). [3] Hartwig & Dreizler, Z. Naturforsch. **51a**, 923 (1996). [4] Chatterjee et al., J. Mol. Struct. **265**, 25 (1992). [5] Kojima et al., J. Chem. Phys. **35**, 2139 (1961). [6] Wollrab & Laurie, J. Chem. Phys. **48**, 5058 (1968). [7] Ziurys et al., ApJL **445**, L47.

NO₃ラジカルのDifference bandsの赤外レーザー分光 Infrared laser spectroscopy of difference bands of the NO₃ radical

(岡山大)<u>川口 建太郎</u>, 唐 健 (Okayama Univ.) K. Kawaguchi, J. Tang

Three difference bands of NO₃, $(v_1v_2v_3v_4)=(2000)-(0001)$, (1000-(0001) and (0010)-(0001)band, have been observed in the 1643, 685, and 690 cm⁻¹ regions, respectively, with an infrared diode laser spectrometer. These bands are thought to be observed by intensity borrowing from the electronic transition $B^2E^{-}X^2A_2^{+}$ through vibronic interaction. The molecular constants of the v₁=2 and v₃=1 states have been determined. The v₁- v₄ band was observed weakly compared with the v₃- v₄ band, and the analysis is in progress.

【序】NO₃ラジカルの基底状態 (² A_2 ') 振動構造には E'電子励起状態からの振電相互作用 $V' = h_3(q_{e+}Q_{3-} + q_{e-}Q_{3+}) + h_4(q_{e+}Q_{4-} + q_{e-}Q_{4+})$

の効果が現れ、 v_3 , v_4 振動数が通常より低くなり、また、 v_3 振動の強度を打ち消しこれまで v_3 基音は観測されていない。しかしながら図1に示すような v_4 =1からのDifference bandsの 強度は v_4 =1, v_3 =1状態がE'電子状態の性質を持つので電子遷移モーメントにより、通常の difference bands より強くなることが期待される。本研究では、これまでの高分解分光では観 測されていない v_3 =1状態の分子定数を得る目的で赤外ダイオードを用い3つの difference bands を測定したので報告する。なお福島・石渡[1]は4波混合により v_1 =1で1つ、 v_3 =1状 態で2つの準位を観測している。ただ、その論文の著者は v_3 =1とは帰属していないので、 最近の光電子分光法では Babin 等[2]は初めて v_3 =1を観測したと主張している。なお v_3 =1の

代わりの候補 v₄=3 帰属については本研究で予想 スペクトルを計算し、観測データと比較したが 説明はできなかった。

【実験】赤外ダイオードレーザーは Laser Analytics 社の液体窒素温度以下で動作する旧式 のシステムを用いた。長光路吸収セルは長さ1 m,60 mm Φ のガラス管で、N₂O₅ガス導入部付近 40 cm に渡ってヒーターを巻き、140°C に加熱 することにより NO₃ラジカルを生成した。FT 分光ではマイクロ波放電で生成したF原子と HNO₃の反応により生成してきたが、それに比べ て約半分の NO₃が生成していることを、1927 cm⁻¹バンドで確認した。NO₃は連続排気条件で のみ観測されたので、熱分解で同時に生成する NO₂と区別するために、封じきった状態でもス ペクトルを測定した。

【観測スペクトルと解析】 1. (2000)-(0001)バンド

以前の(1010)E-(0000)A' バンド(2024 cm⁻¹)の解析で、ΔK=2型の振動回転相互作用が認め られ、相互作用する相手(2000)A'状態の分子定数が次のように決定された[3]。

 $E(2000) = 2008.768(23), B = 0.454518(56) \text{ cm}^{-1},$

ここで回転定数 C は慣性欠損 0.206 amuÅ²よりの計算値に固定していた。本実験では (2000)-(0001)バンド 1630-1661 cm⁻¹を掃引したところ、多くの強い NO₂ v₃ バンドのスペク トル線の中に、連続排気条件でのみ観測されるスペクトル線が検出できた。これらを過去の FTデータと比較したところ約1%の吸収強度で測定されていた。(2000)と(1010)間の相互 作用を含んだエネルギー行列を用いて、(1010)-(0000)バンド 444本、(2000)-(0001)104本 の同時解析により E(2000)=2009.1225(13), B=0.453970(28), C= 0.2256027(82) cm⁻¹と決定 された。慣性欠損は0.455で理論値0.206より大きいのは他の状態との混合によると思われ る。また相互作用定数ξは-0.002497(24) cm⁻¹で以前の値 0.002528(19)と一致している。 II. (1000)-(0001) バンドと(0010)-(0001)バンド

領域 666-708 cm⁻¹の間の12のモードで、データが取得できたが、NO₂ v₂ バンドの強い スペクトル線に妨害されていた。NO2が比較的少ない領域のスペクトルを図2に示す。ここ で、NO2のスペクトル線は HITRAN データおよび封じ切った状態でのスペクトルとの比較に より除去している。解析には上記と同じAk=2型の振動回転相互作用を含めたエネルギー行 列を用いた。その相互作用定数ξは振動座標 Q1の行列要素、波動関数の混合を考慮して -0.0028 cm⁻¹を初期値とした。(1000)-(0001)バンドではスピン分裂が v₄=1 状態のスピン・軌 道相互作用定数 aeffの効果が主となるので、各スペクトル線のスピン分裂はほぼ正確に予測 できる。また福島・石渡の測定[1]によりバンドオリジンが 1051.26±0.06 cm⁻¹と報告され ていて、回転定数を(2000)状態の値から見積ると遷移周波数をかなり正確に予想でき、それ を図2に示す。仮定した回転定数の誤差、バンドオリジンの誤差を考慮しても、観測されて いる強いスペクル線は説明できないので、弱い線の中から帰属を進めている。強い線はv3-v4 に帰属され、バンドオリジン1054.3060(21) cm⁻¹コリオリ結合定数 0.029447(71) cm⁻¹など決定 され、図2にそれら分子定数を用いた計算スペクトルも示す。福島・石渡により観測された 2本のうちのひとつ 1055.31 cm⁻¹は N=2, K=2, J=1.5 への遷移として説明できたが、もうひと つに相当する準位は見出されなかった。

【謝辞】レーザー分光計を譲っていただき、またv₃-v₄バンド測定について議論いただいた田 中桂一博士、原田賢介博士、 Observed diode laser spectrum N₂O₅合成のためにオゾナイザー を使用させていただいた福島勝博 士、ダイオードレーザー素子を貸

- していただいた金森英人博士に感 謝致します。
- [1] 福島、石渡, 分子分光研究会 (2018. つくば)
- [2] Babin et al. J. Chem. Phys. Letters. 11 (2020) 395.
- [3] Kawaguchi et al. J. Mol. Spectrsc. 344 (2018) 6.

トルと計算スペクトルの比較

NO₃ の分散ケイ光分光 - 面外振動準位の観測 -Dispersed fluoresence spectroscopy of NO₃ - out-of-plane vibrational levels -

福 島 勝 広島市立大学、情報科学研究科

Masaru Fukushima Faculty of Information Sciences, Hiroshima City University

We have observed laser induced fluorescence (LIF) of the NO₃ $\tilde{B}^{-2}E' - \tilde{X}^{-2}A'_{2}$ system under jet cooled condition, and measured dispersed fluorescence (DF) spectra from single vibronic levels of the $\tilde{B}^{-2}E'$ state. The vibrational structure of the DF spectra obtained by the excitation of the 0+770 cm⁻¹ band shows some fluorescence bands terminated to the out-ofplane vibrational levels, a_{2} " and e", e.g. the fluorescence band to the e" level of $v_{2} + v_{4}$. The present observation indicates that the vibronic level at 770 cm⁻¹ above the vibrationless level of the $\tilde{B}^{-2}E'$ state has any contribution of the v_{2} and v_{4} modes and/or that the $\tilde{B}^{-2}E'$ fluorescent state has any out-of-plane geometry. It is also indicated that the out-of-plane vibrational levels are important to analyze the vibrational structure. The observed intensity distribution of the spectra indirectly shows that the level closely lying the v_{1} fundamental at 1053 cm⁻¹ has contribution of 3 v_{4} ($l = \pm 3$), but not v_{3} .

【序論】我々はレーザー誘起ケイ光法 (LIF)、および、2色共鳴4光波分光法 (2C-R4WM)を利用して、NO₃ $\tilde{X}^{-2}A'_{2}$ システムの振動構造の解明を進めている。最近、 Neumark の研究グループは Slow photoelectron velocity-map imaging 法を用いて、極低 温 NO₃ の高分解能負イオン光電子スペクトルを発表した [1]。そこでは、従来、ケイ光ス ペクトルから v1(a1') 基音バンドに帰属されていた ~1000 cm⁻¹ 領域にある振動準位が、 この光電子スペクトルからは v3(e')と帰属される、とされている [1]。我々は、この v1 基 音領域に近接した2つの準位があることを発見し [2]、我々や Hirota [3] は、観測されたバ ンド強度や и バンドの同位体シフトなどに基づいて、この新たに見出された準位を l= ±3 をもつ 314 (a1') と帰属している。Neumark グループの実験では、NO3 の各振動準位 のイオン化閾値に近いエネルギーを用いて NO₃⁻ をイオン化 (電子脱離、photodetachment) させ、発生する光電子の運動エネルギー(つまり、電子脱離の際の過剰エ ネルギー)の空間分布を測定し、各振動準位に関して、光電子強度 (つまり、空間分布 の積分)と光電子の運動エネルギーとの依存性を議論している。Neumark らの帰属の根 拠は、v1 バンドに関するこの依存性が v4 (e') 基音バンドの依存性に近い、つまり、v1 バ ンドの依存性が e' バンドの依存性と一致する、という実験結果である。しかし、この Neumark グループの実験結果は、我々らの 314(a1') との帰属とも矛盾しない。なぜならば、 3v4 (a1') 準位は a1' であるが、v1 基音や 2v4 (a1') 倍音などとは異なり、l = ±3 をもつ からである。(²Π 直線分子の変角振動の基音準位 ²Σ⁽⁺⁾ が Σ 準位であるにもかかわら ず、Λ = 1 をもつ ²Π 分子であるために、²Σ 分子に比べてかなり大きなスピン分裂をもつ ことに類似している。) 我々の帰属では 3¹/4 準位の a₁'と a₂'の分裂幅が 160 cm⁻¹ と、

かなり大きいが、これも振電相互作用により完全に相殺されない *l* = ±3 によるものとし ており、Neumark グループの結果は、この我々の解釈とも矛盾しない。

本実験では、NO₃ $\tilde{B}^{-2}E' - \tilde{X}^{-2}A'_{2}$ システムの振電準位からのケイ光分散 (DF) スペ クトルを測定し、その振動構造から $v_1(a_1)$ 基音バンド付近の帰属を検討した。 【実験】実験手法などは、既報を参照のこと [2]。

【結果・考察】NO₃の赤領域にある $\tilde{B}^{2}E' - \tilde{X}^{2}A'_{2}$ 電子遷移の吸収スペクトルは、振電バンドがブロードであることが報告されており、LIF 励起スペクトルでも同様である。¹⁴NO₃、 ¹⁵NO₃に関して、それぞれ、4 個、5 個 の振電準位からのケイ光分散スペクトルを測定した。 これらのうち、0+770 cm⁻¹ バンド ($\tilde{B} - \tilde{X}$ 遷移の 0₀⁰ バンドから +770 cm⁻¹ にあるバンド の意)を励起して得られた DF スペクトルは、面外振動準位に帰属される遷移 (a_{2} " や e^{n} バンド)が観測されている点で、特徴的である。このスペクトルには、0₀⁰ バンドを励起 して得られた DF スペクトルの振動構造が、2 μ 4 バンド付近を原点として現れており、その 中には μ 4 基音も含まれているが、この 2 μ 4 + μ 4 とも言うべきバンドは、0₀⁰ バンドのスペ クトル中に帰属されている3つの 3 μ 4 (a_{1} ²)、(a_{2} ²) および (e^{2}) 準位とは異なるエネルギーに ある。2 μ 4 準位は μ 2 基音と近接しており、この 2 μ 4 + μ 4 とも言うべきバンドは、 μ 4 + μ の e^{n} 結合音と帰属できる。この e^{n} バンド以外にも $\mu_{1}(a_{1})$) 基音に対応して $\mu_{1} + \mu_{2}$ 結合音 の a_{2} ⁿ バンドなどの面外振動準位が観測された。特に、他のスペクトルではほとんど観測 されていない $\mu_{2} + 3\mu_{4}(a_{2})$ の a_{1} "バンドが強く観測されているのには注目される。

0+770 cm⁻¹ バンドからの DF スペクトルでは、 v_4 のプログレッションは、(全てでは無いが)比較的強く観測されているものの、上記の a_1 " バンドを除き、 v_2 基音との結合音は比較的弱く、ほとんど観測されていない。この DF スペクトルには、我々が v_3 基音に帰属している 1500 cm⁻¹ にある振動準位と v_2 基音準位との結合音 $v_2 + v_3$ が比較的強く観測されており、その強度は v_3 基音バンドより強いほどである。仮に、この 1500 cm⁻¹の振動準位が $v_3 + v_4$ の場合、この v_4 結合音のみが特異的に強い強度をもつことになり、他の v_4 結合音とは傾向が全く異なってしまう。したがって、間接的ではあるが、この DF スペクトルの振動構造は、1500 cm⁻¹ の準位が v_3 であることを示唆していると考えられる。

この 0+770 cm⁻¹ バンド励起で得られたスペクトルの振動構造から、 $\tilde{B}^{-2}E' - \tilde{X}^{-2}A'_{2}$ 吸収スペクトルのブロードな 0+770 cm⁻¹ 領域は、 \tilde{B} 状態の 2¹⁴ 倍音と ¹² 基音が相互 作用した準位(スペクトル領域)と帰属される。 $\tilde{X}^{-2}A'_{2}$ 状態の 2¹⁴ と ¹² は 760 cm⁻¹ 付近にあり、振動エネルギーの観点からは妥当であると思われる。さらに、ケイ光スペクト ルに面外振動モードが観測されたことから、 \tilde{B} 状態の非平面構造が予想される。

0+770 cm⁻¹ バンド以外のスペクトルのうち、0+1637 cm⁻¹ バンド励起のスペクトルは、 0+770 cm⁻¹ バンド励起のスペクトルと似た振動構造をもっている。このため、 \tilde{B} 状態の 1637 cm⁻¹ 領域は、 $u_1 \ge 2u_4$ 、および、 $u_1 \ge u_2$ との結合準位が相互作用した領域と考え られる。ただ、この高いエネルギー領域は、ケイ光の量子収率が低下している領域なので、 詳細な振動構造は考察不可能である。この他、 \tilde{B} 状態の 948 \ge 1440 cm⁻¹ 領域を、それ ぞれ、 $u_1 \ge u_1 + u_4$ 領域と帰属可能なケイ光スペクトルが測定されている。

[1] M. C. Babin, et al., J. Phys. Chem. Lett. 11, 395 (2020).

[2] M. Fukushima and T. Ishiwata, 68th ISMS, paper WJ03.

[3] E. Hirota, J. Mol. Spectrosco. 310, 99 (2015).

屈曲 3 原子分子の振動波動関数 - 2D 調和振動による展開 -Vibrational wavefunctions of bent molecules - expansion using the 2D harmonic oscillator functions -

福 島 勝 広島市立大学、情報科学研究科

Masaru Fukushima Faculty of Information Sciences, Hiroshima City University

It is well known that the wavefunction of the isotropic two dimensional (2D) harmonic oscillator is expressed using Gauss function, $e^{-(\beta r)^2/2}$, and associated Laguerre polynomials, $L_n^k(x)$; $\phi_{v,l}(r) = N_{v,|l|} \beta (\beta r)^{|l|} L_{v-|l|}^{|l|} ((\beta r)^2) e^{-(\beta r)^2/2} e^{-il\varphi}$, where $N_{v,|l|}$ and r are normalization constant and the radial coordinate, respectively, and $\beta = \sqrt{\mu\omega/(h/2\pi)}$, where μ and h are reduced mass and Plank constant and where $\omega = \sqrt{k/\mu}$ is normalized frequency calculated from force constant, k. In this study, we have calculated vibrational wavefunction of bent tri-atomic molecules adopting expansion procedure using the wavefunctions of the 2D harmonic oscillator, $\psi_v(r) = \sum c_i \phi_{v,l}(r)$. The radial potential function for the bending mode of the bent molecules are assumed as $V(r) = k_2 r^2 + k_4 r^4$, where k_2 and k_4 are force constants for the quadratic and quartic terms, respectively, of the radial r coordinate.

【序】現時点において、直線分子と屈曲分子の変角振動モードを統一的に解析する手法 は無い。分子の回転では、直線分子は、偏長(prolate)対称コマ分子として分類できるが、 直線分子では分子軸(a軸)回りの慣性モーメントが0なので、Ka>0の回転構造が無限 大に追いやられ、Ka=0のみをもつ構造になると解釈できる。擬偏長 (near-prolate) 対称 コマ分子は屈曲分子なので、分子の回転の観点からは、直線分子と屈曲分子は相関が取 れている、と言える。一方、変角振動モードは、直線分子では縮重モードであるのに対して、 屈曲分子では非縮重モードという大きな違いがある。屈曲分子の変角運動が直線構造を 含まない場合には、1次元振動運動として問題無いが、含むようになると支障をきたす。 様々な見方があると思うが、その1つは直線構造の瞬間だけ Ka > 0 構造が発散してしま う、という支障である。逆に、直線分子の変角運動は2つの独立な直交座標の非縮重振動 として2つの量子数 (n_x, n_y) で表すことができるが、a 軸からの動径方向 (r) への変位と a 軸回りの振動角運動量による極座標表現 (n,l) も可能である。さらに、Cohen-Tannoudjiら の教科書 [1] では右回りと左回りの振動角運動量 (n_R, n_L) を用いた表現も示されている。 Herzberg は、縮重ポテンシャル V(r)を $V^+ - V^- = \alpha r^2 + \beta r^4$ の相互作用で分裂させ、 その影響(Renner-Teller 相互作用)を議論している [2]。本研究では、この分裂で生じ た下部の歪んだ(最安定構造が非直線構造、の意)ポテンシャルを屈曲分子と想定し、そ の振動波動関数を直線分子の変角モードの基底関数である等方2次元調和振動(2D-HO)の波動関数で展開することを試みた。この展開は、あからさまな報告は無いものの、 既に試みられていて、新規性は無いと思われるが、本研究では、これまでに無かった(と 思われる)(n_R, n_L)表現で動径方向の2次と4次の 2DHO による行列要素を計算した点で

新規性があると感じている。上記の相互作用により歪んだ屈曲分子の変角ポテンシャルは 調和振動では無いが、結果をみると一般の調和項と非調和項として解釈可能である。

【実験】計算は windows10 上の ubuntu 環境内で行い、固有値問題には文献 [3] を利用した。計算は、換算質量 $\mu = 1$ 、 $\hbar = 1$ など規格条件化で行った。

【結果と考察】まず、1次元問題、つまり、4次項を含むポテンシャルを調和振動の波動関数 $|n\rangle$ での展開を試みた。よく知られているように、行列要素 $\langle n + 2|x^4|n\rangle$ などは、調和振動の昇降演算子 a, a^+ から容易に求まる。結果を図1に示す。V(x) が x の正負方向で対称なので、歪んだ領域の波動関数は、偶奇パリティで縮重している(反転運動に類似)。

2D-HO の波動関数 |*n,l*〉は、Gauss 関数と Laguerre 倍多項式で表される。教科書 [2] では、2D-HO の右と左回りの角運動量の4つの演算子は以下と示されている(2つのみ

 $a_R^+ = \frac{e^{i\varphi}}{2} \left[\beta r - \frac{1}{\beta \partial r} - \frac{i}{\beta r} \frac{\partial}{\partial \varphi} \right]$, $a_L = \frac{e^{i\varphi}}{2} \left[\beta r + \frac{1}{\beta \partial r} + \frac{i}{\beta r} \frac{\partial}{\partial \varphi} \right]$ 示す)。r の演算子は、これらの演算子を用いた $a_R^+ + a_L$ で表すことができ、それらを用いて行列要素 $\langle n_R + 2, n_L + 2|r^4|n_R, n_L \rangle$ などを (かなり手間(単純作業の繰り返し)だが) 求めることができる。これらの行列要素は (n, l)表現へも容易に変換でき、それらは Brown と Jørgensenの文献 [4] と一致した。行列要素は $|l| = |n_R - n_L|$ に関して直交し ており、 $\Delta l = 0$ の選択測をもつため、計算は各 l毎に行った。l = 0の結果を図2に示す。l= 0の波動関数は、障壁の上領域では r = 0でも値 (極値)をもつことが判る。歪んだ部 分は、調和ポテンシャルでは無いが、固有値を通常の振動構造の式を用いて解析したとこ ろ、調和定数 $\omega = 3.34$ と非調和定数 x = -0.115が得られ、非調和性がかなり大きいもの の、一般的な振動解析の式で解析可能、つまり、調和近似可能なことが判った。

図1 1次元 (*k*₂ = −2、*k*₄ = 0.1)

図2 2次元(*k*₂ = -2、*k*₄ = 0.1)

- [1] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics I, Hermann, Paris, France (1977) (translated from the French by S. R. Hemley, N. Ostrowsky, and D. Ostrowsky).
- [2] G. Herzberg, MM III, D. van Nostrand Company, LTD., Princeton NJ (1967).
- [3] W. H. Press, et al., Numerical recipes in C, Cambridge University Press, Cambridge, UK (1988).
- [4] J. Brown and F. Jørgensen, Adv. Chem. Phys. 52, 117 (1982).

光音響分光法で観測した酸素分子の衝突誘起吸収 (青学大理工[®],神奈川大理^b) 〇柏原航[®] · 逸見冬弥[®] · 河合明雄^b · 鈴木正[®]

Collision-induced absorption of oxygen molecule observed by photoacoustic spectroscopy (Aoyama Gakuin Univ.ª, Kanagawa Univ.^b) Wataru Kashiharaª, Toya Hemmi^a, Akio Kawai^b, Tadashi Suzuki^a

Collision complex of oxygen (O₂-O₂) is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden optical electronic transitions become partially allowed. These transitions are called collision-induced absorption (CIA). The CIA of oxygen plays important roles in atmospheric chemistry. The CIA is a small but significant part of the total budget of incoming shortwave radiation. In addition, it has been known that singlet oxygen generated by the CIA has high reactivity and undergoes reaction with volatile organic compounds in the atmosphere. However, the mechanism of singlet oxygen products by the CIA still remains unknowns. In this study, we measured the CIA bands of oxygen at around 477 nm by using photoacoustic spectroscopy. The lineshape of the CIA cannot be reproduced by reported empirical model. These results indicate that non-radiative deactivation process in the excited state produced by CIA should be observed by PAS.

衝突誘起吸収(CIA)は、分子どうしが衝突した瞬間の分子間相互作用を反映して起こる特殊な光吸収であり、衝突過程での分子間相互作用を調べる上で有用な情報を与える。酸素分子の場合は、大気中のCIAにより太陽光の吸収をもたらし、非常に微弱な吸収ではあるが、大気の熱放射を計算するうえで無視できないと報告されている¹⁾。また CIA により生成する反応性が高い 一重項酸素は、大気中の揮発性有機化合物と反応する事が知られている²⁾。しかし、酸素分子の

難であり詳細な光吸収機構の解明が行われていない。本研究では光音響分光法(PAS)によって、 酸素分子の477 nm 付近のCIA を実験室で正確に測定した。Fig.1 に PAS によって得られた CIA のスペクトルを示す。PAS により観測されたスペクトルを従来の経験式³⁾で解析したと ころ、高波数領域では一致しなかった。これは高波数領域では過剰なエネルギーが、分子の 運動エネルギーに変換されるからであると考えられる。以上の結果は、CIA により生成され る励起状態の無放射失活を PAS により観測できることを意味している。発表では、CIA によ り生成される励起状態について議論する予定である。

- 1) S. Solomon et al., J. Geophys. Res. 1998, 103, 3847.
- 2) J. R. Acarreta et al., J. Geophys. Res. 2004, 109, D05204.
- 3) M. Sneep et al., J. Quant. Spectrosc. Radiant. Transfer. 2003, 78, 2859.

L30

ベンゼン分子の回転定数と平均結合長に関する ab initio 理論計算 (京都大院理 ^e, 計算科学振興財団^b, お茶大理^e) 〇馬場正昭^e・長嶋 雲兵^b・平野 恒夫^e

Ab Initio Theoretical Calculation on Rotational Constants and Averaged Bond Length of Benzene

(Kyoto Univ.^a, FOCUS^b, Ochanomizu Univ.^c) Masaaki Baba^a, Umpei Nagashima^b, Tsuneo Hirano^c

It was experimentally shown that C-H and C-D bond lengths are almost identical in benzene. We have explained this fact by ab initio calculations in which the C-H bonds are observed as being bent in-plane and out-of-plane. The averaged bond length is given by the projection onto the inertial principal axis. The effect of bending vibrations reduces the averaged bond length and cancels the lengthening due to anharmonicity in the C-H stretching vibration.

【序】多くの有機分子では、C-H 結合長は C-D結合長よりも3-5mÅ長いことが知られ ている。それは、C-H 伸縮振動における非調 和性によって、ゼロ振動準位での平均結合長 r₀は、ポテンシャルエネルギーが最小値とな る平衡結合長 r_eよりも長くなるのだが、零点 エネルギーが小さい C-D 結合ではその度合 いも小さく、結果的に C-H 平均結合長のほう が長くなるためである(図1)。しかしながら、 我々が観測したベンゼン分子の高分解能スペ クトルは、C-H 結合長と C-D 結合長がほぼ 同じであることを示していた[1]。

最近、我々は直線三原子分子が「曲がって 見える」ことを提唱し、回転定数から求めら

図1. C-H 伸縮振動のポテンシャル曲線

れる結合長が慣性主軸への投影長であると考えると、質量同位体の実験結果が正確に再現されることを実証した[2]。この理論を平面正六角形分子であるベンゼンに適用し、正確な ab initio 計算を行って平均結合長を求め、 $r_0(C-H) \Rightarrow r_0(C-H)$ を検証した。

【結果と考察】高分解能スペクトルの解析から求められた平衡結合長および平均結合長は、 それぞれ $r_e(C-H) \Rightarrow r_e(C-D) = 1.0864$ Å、 $r_0(C-H) \Rightarrow r_0(C-D) = 1.0805$ Å であった。ただ、実 験から求められる平衡結合長は信頼性に乏しいので、まずは CCSD(T) / [aug-cc-pVQZ]で構造 最適化の計算を行った。その結果は、 $r_e(C-H) = r_e(C-D) = 1.0830$ Å であったが、注目すべき は伸縮振動の非調和性から予想される $r_0(C-H) > r_e(C-H)$ が成り立っていないことである。そ こで、ポテンシャルエネルギー曲面を計算したいのだが、ベンゼン分子の基準振動の30次 元の正確な計算は事実上不可能なので、ベンゼン分子を $[C_5H_5]-[C_{\alpha}]-[H_{\alpha}]$ の3つのグループ に分けて考える。そうすると、直線構造にポテンシャルエネルギーの極小値をもつ三原子分 子とみなすことができ、「曲がって見える」と考えて回転定数を吟味することができる。さら に、 $[C_5H_5]-[C_{\alpha}]$ 部分は $[H_{\alpha}]$ に比べるとかなり重いので、これをまとめて仮想的な二原子分子 $[C_5H_5\cdot C_{\alpha}]-[H_{\alpha}]$ として取り扱うと、 C_{α} -H_{α} (D_{α})、結合の伸縮振動、面外変角振動、面内変

角振動は、それぞれ図2に示す3つのロー カルモード、L_{str},L₁,L₁ で表すことが できる。図1に示したLstrについて計算さ れたポテンシャルエネルギー曲線では非 調和性が比較的大きく、 $r_{\rm e}$ (C-H) \Rightarrow $r_{\rm e}$ $(C-D) = 1.0911 \text{ Å}, r_0(C-H) \doteq r_0(C-D) =$ 1.0888 Å であった。これから、伸縮振動に L」 よる平均長の伸びは C-D よりも C-Hのほ うが、2.4 m Å だけ長くなることが示され た。これは、一般的に理解されている結果 である。これに対して、C-Hの面外変角(L 」)および面内変角(L_{II})振動では、ポテ ンシャルエネルギーは調和振動として良 く近似でき、 r_0 は振動平均を取っても変化 しない。しかし、振れの平均角度は、軽い H の方が、重いDより大きくなるので、z 軸への投影長は、 $C\alpha$ -H α の方が $C\alpha$ -D α

図2. ローカルモード L_{str} , L_{\perp} , L_{\parallel}

よりも短くなる。正確な計算によって、投影長の差は、L_Lでは 1.7 mÅ、L_{//}では 1.1 mÅ と 求められ、これらが伸縮振動での結合長の伸びの差 2.4 mÅ を相殺して、結局 $r_0(C-H) \ge r_0(C-D)$ の差は 0.1 mÅ と、非常に小さいことが検証された。

【結論】高分解能分光の実験結果は、ベンゼンの C-H 結合が面外、面内に曲がって見えると 考えると、見事に説明される。C-H の平均結合長は、平衡結合長とほとんど変わらないし、 結果的に C-H と C-Dの平均結合長もほとんど同じになる。この考え方は、すでに多くの三 原子分子で検証されていて、ベンゼンにも適用できることが示された。多環芳香族炭化水素 であるナフタレン[3]やアントラセン[4]でも同じことが考えられ、C-H 結合が面外に曲がって いると考えると、実験で観測された負の慣性欠損[5]も容易に説明することができる。ベンゼ ンの重水素置換体で得られた慣性欠損の値は正であるが、これはコリオリ相互作用の効果が 大きいことによると考えられる。

- [1] S. Kunishige, T. Katori, M. Baba, M. Nakajima, and Y. Endo, J. Chem. Phys., 143, 244302 (2015).
- [2] T. Hirano, U. Nagashima, and M. Baba, J. Mol. Spectrosc, in press.
- [3] M. Baba, et al., J. Chem. Phys., 135, 054305 (2011).
- [4] M. Baba, et al., J. Chem. Phys., 130, 134315 (2009).
- [5] T. Oka, J. Mol. Struc., 352/353, 225 (1995).

光周波数コムを周波数基準とした 1,2-ベンズアントラセンの高分解能分光 (福岡大理^a,神戸大分子フォト^b,ニコラス・コペルニクス大^c,京大院理^d) の御園雅俊^a・山崎翔^a・笠原俊二^b・西山明子^b・馬場正昭^b

High-resolution spectroscopy of 1,2-benzanthracene with reference to an optical frequency comb (Fukuoka Univ.^a, Kobe Univ.^b, Nicolaus Copernicus Univ.^c, Kyoto Univ.^d) <u>M. Misono^a</u>, S. Yamasaki^a, S. Kasahara^b, A. Nishiyama^c, M. Baba^d

We studied high-resolution spectroscopy of 1,2-benzanthracene, a prototypical polycyclic aromatic hydrocarbon. In our experimental system, the frequency of a single-mode laser is controlled with reference to an optical frequency comb. In the obtained spectra, the spectral lines are rotationally resolved, and the linewidth is about 15 MHz.

【はじめに】 多原子分子の電子励起状態には、様々な興味深いダイナミクスが存在するこ とが知られており、超高分解能分光はこれらの現象を明らかにするための有力な手段である。 高分解能分子スペクトルにおいて、電子励起状態間の相互作用は、信号線の微小なシフトや 線幅の変化として現れるため、測定には高い分解能と周波数精度が必要である。これまでに 我々は、連続的に分布する分子スペクトルの測定に有利な高分解能分光システムとして、単 ーモードレーザーと光周波数コムを用いたシステムを開発した。今回は、開発した分光シス テムを利用して、1,2-ベンズアントラセンの測定を行ったので報告する。

【実験】 本研究の実験システムを Fig. 1 に示す。光源は波長約 754 nm、 出力約 900 mW の単一モード Ti:Sapphire レーザーである。この出 力光を第2高調波発生装置に入力し、 波長約 377 nm、出力約 30 mW の紫外 光を発生させた。この紫外光を真空チ ャンバー内に導入し、超音速分子線と 直交させた。バッファーガスとしては Ar を用いた。

Ti:Sapphire レーザー光の1部を分 岐し、ダブルパス構成の音響光学周波 数シフター(AOFS)を通したのち、

Er コムの出力光と重ね合わせ、ビートを発生させた。Ti:Sapphire レーザーの周波数を f_{laser} 、AOFS の駆動周波数を f_{AO} 、Er コムの繰り返し周波数を f_{rep} 、キャリア・エンベロープ・オフ セット周波数を f_{CEO} 、モード次数を n、観測されたビート周波数を f_{beat} とすると、これらの間 には、

 $f_{\text{laser}} + 2f_{\text{AO}} = (nf_{\text{rep}} + f_{\text{CEO}}) + f_{\text{beat}}$,

という関係がある。Er コムの f_{rep} と f_{CEO} を Cs 原子時計等の基準周波数にロックし、f_{beat} が一定になるように Ti:Sapphire レーザーを制御すると、この式の右辺は一定となる。したがって、

 f_{AO} によって f_{laser} を制御することができる。

以上のシステムを用いて、今回は 1,2-ベンズアントラセンの 00 バンドの測定を行った。

【結果】 Figure 2 に本研究で得られた 1,2-ベンズアントラセンのスペクトルを示す。横軸 の絶対波数は、Cs 原子時計にロックした Er コムで校正されている。26527.6 cm-1 から 26527.7 cm-1 にかけて Q 枝が観測され、低波数側に P 枝が、高波数側に R 枝が観測されて いる。線幅は約 15 MHz であり、回転線まで分離したスペクトルが得られた。

現在、PGOPHER を用いた解析を進めており、講演ではこれについても述べる。

NO2 ラジカルの 610-630 nm 領域の高分解能レーザー分光

(神戸大分子フォト*), 京大エ^b) 〇笠原俊二*・多田康平^b・平田通啓*・吉澤匠*

High-resolution Laser spectroscopy of NO₂ radical in 615-630 nm region

(Kobe Univ.^a, Kyoto Univ.^b)Shunji Kasahara^a, Kohei Tada^b, Michihiro Hirata^a, Takumi Yoshizawa^a

Hyperfine-resolved high-resolution fluorescence excitation spectra of the $A^{2}B_{2} \leftarrow X^{2}A_{1}$ electronic transition of ${}^{14}NO_{2}$ radical have been observed for the vibronic bands around 15885, 16218, and 16321 cm⁻¹ by crossing a single-mode laser beam perpendicular to a collimated molecular beam. Recently, we reported the hyperfine structure of the ${}^{q}R_{0}(0)$ lines ($k = 0, N = 1 \leftarrow 0$ transition) in 14500-16800 cm⁻¹ energy region. The determined Fermi contact interaction constants shows a sharp decreasing in 16200-16600 cm⁻¹ region, and it may be caused by the interaction with the other electronic state. In this work, we have observed the rotational structure for 15885, 16218, and 16321 cm⁻¹ bands to find the perturbations.

【序】二酸化窒素 (NO₂) は安定なラジカルであり代表的な窒素酸化物であるため、大気化学の視点や分子科学の視点から興味深く、幅広い領域でのスペクトル観測が報告され、数多くの研究がなされている。さらに、可視光領域に強い吸収を持ち、電子スピンによる微細分裂、 核スピンによる超微細分裂が観測されるなど興味深い特徴があるため、幅広い領域でのスペクトル観測が報告されている。可視領域の強い吸収遷移はおもに基底状態 X²A₁ 状態から電子励起状態 A²B₂ 状態への遷移と考えられるが、観測される振電バンドは非常に複雑であることが知られ、これは、基底状態の高振動励起状態とのカップリングによると考えられている[1]。 特に、高分解能分光によって各回転線の超微細分裂を観測することで、超微細分裂の大きさ

から基底状態である ²A₁ 状態の寄与が 考察されており[2-5]、近年、我々のグ ループでも 14500-16800 cm⁻¹の領域に ついて各振電バンドの $^{q}R_{0}(0)$ 回転線(k= 0, $N = 1 \leftarrow 0$)の超微細分裂を観測し て NO₂ の相互作用に関する知見を得 た[6]。図 1 にフェルミ接触相互作用定 数の振電エネルギー依存性を示す。そ のうち、15885、16218、16321 cm⁻¹付近 の 3 つのバンドについて回転構造の全 体像を観測し、回転線の解析と相互作 用に関する知見を得ることを試みた。

図 1. フェルミ接触相互作用定数の振電バンド依存性

【実験】光源には Nd³⁺: YVO₄ レーザー (Coherent Verdi-V10) 励起の単一モード波長可変色素 レーザー (Coherent CR699-29、色素: DCM、線幅:数 MHz)を用いた。NO₂ガス(市販)は Ar ガス 1.5 atm と共にパルスノズル(φ1 mm)から真空チャンバー内に噴出した。その後、スキマ ー (φ1 mm) とスリット (幅1 mm) に通して並進方向の揃った分子線とした。分子線とレー ザー光とを直交させることで気体分子の並進運動に起因するドップラー幅を抑え、高分解能 蛍光励起スペクトルを観測した。その際、球面鏡と回転楕円体面鏡を組み合わせた高輝度反 射集光鏡を分子線とレーザー光の交点に設置し、励起分子からの蛍光の検出効率を高めた。 集光鏡の上下にヘルムホルツコイルを設置することにより 500 Gまでの磁場が印加できるよ うにして、磁場によるスペクトル線の変化の観測も行った。レーザー光の絶対波数は、同時 に測定したヨウ素分子のドップラーフリー励起スペクトルと安定化エタロンの透過パターン から、±0.0001 cm⁻¹の精度で決定した。

【結果と考察】 以前、¹⁴NO₃ を観測した時に ¹⁴NO₂ の信号 と区別するために観測した 15885 cm⁻¹ バンドの回転構造 を観測していたので、その回転 構造の解析を行った。観測され たバンドの全体像を図 2 に示 す。回転線の帰属にはすでに報 告されている基底状態の回転 準位および超微細準位間の combination differences を利用 してk = 0および k = 1の回転 線について確実な帰属を行う ことができた。その結果、比較

的相互作用の影響の少ないと思われていた 15885 cm⁻¹バンドでさえ、相互作用により回転線 が分裂し手居ることが明らかとなった。

一方、フェルミ接触相互作用定数に異常が観測された 16218 cm⁻¹バンドと 16321 cm⁻¹バンドについても、回転構造と超微細分裂の観測を行った。16218 cm⁻¹バンドでは *4R*₀(0)の超微細構造以外は通常のバンドと大きな違いは見られなかったが、16321 cm⁻¹バンドでは複数のバン

ドが同じ領域に混在しており、 回転構造が複雑になっている ことが判明した。これらの回転 構造についても同様に基底状 態の combination differences を 利用して確実な帰属を行いつ つある。

図 3. 観測された 16321 cm⁻¹バンドの回転構造

【参考文献】

1. R. E. Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 63, 4977 (1975).

2. C. A. Biesheuvel, D. H.A. ter Steege. J. Bulthuis, M. H. M. Janssen, J. G. Snijders, and S. Stolte, Chem. Phys. Lett. **269**, 515 (1997).

3. C. A. Biesheuvel, J. Bulthuis, M. H. M. Janssen, S. Stolte, and J. G. Snijders, J. Chem. Phys. 109, 9701 (1998).

4. G. Persch, H. J. Vedder, and W. Demtröder, J. Mol. Spectrosc. 123, 356 (1987).

- 5. J. Xin, S. A. Reid, F. Santoro, and C. Petrongolo, J. Chem. Phys. 115, 8868 (2001).
- 6. K. Tada, M. Hirata, and S. Kasahara, J. Chem. Phys. 147, 164304 (2017).